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Internet Advertising Auctions

* Second Price Auctoin (SPA): highest bidder wins, pays the 2nd highest bid

* First Price Auction (FPA): highest bidder wins, pays its own bid
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Main Questions:

How will bidders behave in repeated first price auctions

if they use online-learning algorithms to learn to bid?

(cf., single bidder learning)

Will they converge to a Nash equilibrium?
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Our Results

A wide class of online learning algorithms (“mean-based”)
converge to a Nash equilibrium in the first price auction
(under some assumptions on bidders’ values).

~

/




Online Learning in Repeated FPA

Bidders get feedback from the | ‘
auction to update algorithms. / ' l
A=z
FPA single item
N bidders . : :
* Bidder who bids the highest

Each bidder i _ (random tie-breaking) wins, pays
« has a fixed value v: Infinite horizon: its own bid.
* runs an online learning Round t > 1 Utility ut of bidder i at round t:
algorithm (mean-based). . pi_ bti’ for the winner;
e 0, foraloser.
Bidder i submits a bid b} Nash equilibrium of
chosen by its algorithm. | one-shot auction

Suppose all values and bids are in a discrete space normalized to a bounded non-negative integer space {0, 1, ..., V}.
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Mean-Based Learning algorithm

[Braverman-Mao-Schneider-Weinberg 2018, Feng-Guruganesh-Liaw-Mehta 2021]

« Let al(b) be the average utility of bidder i if it bids b in the first t rounds:
t

: 1 : .
a(b) =7 ) uk(b,b5)

s=1
* Alearning algorithm is (y;)-mean-based if

at_ (b)) —at_;(b) >Vy, = Prob(ibidsbinroundt) <y,

where y; = 0 Examples:
e Greedy (Follow the Leader)

* No-regret mean-based learning algorithms
* ¢-Greedy
* Multiplicative Weights Update (MWU)
* Follow the Perturbed Leader




Nash Equilibria of (One-Shot) FPA

e Letv! =v? = =

|
|
highest-value bidders

second-highest-value bidders (if exist)

* Assume each bidder bids strictly smaller than its own value.

* Nash equilibria (omitting corner cases and other bidders):

M highest-value bidders second-highest-value bidders
> 3 vt —1 any
2 vl —1orv!t—2 any

UM+1—1=U2—1




Main Results (Informal)

M Time-average | Last-iterate
> 3 v v

2 v X

1 X X

* Time-average:

M = # bidders with the
highest value v,

v': Almost surely converge.

X: May not converge.

* (traditional) the empirical distributions of bids approach a Nash equilibrium.
* (ours) the fraction of rounds where bidders play a Nash equilibrium approaches 1.

e | ast-iterate:

* bidders’ mixed strategy profile approaches a Nash equilibrium.



Main Results (Formal)

* If M = 3, then with probability 1, both of the following happen:

e lim=Y¢_,I[bi = vl —1,vie M| =1

tooot
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t—oo

* If M = 2, then with probability 1, one of the following happen:

 lim-Yt_ I[bi=vl—1,vie M} =1,and Vi € ML, limx} = 1,1_,

tooot t—o00

e lim=Y¢_,I[b} = v —2,vi e M}] =1

tooot

* If M = 1, there exists a mean-based algorithm that does not converge to NE,

either in last-iterate or in time-average.



M = 1 : Non-Convergence

 Three bidders with vl = 10,v2 =v3 =7
* Each player uses the Follow the Leader algorithm (0-mean based)

* They may generate the following bidding path (b}, bZ, b?)¢>1
° (7; 6; 1)1 (71 1; 6)/ (7/ 1; 1)/ (7) 6; 1)) (71 1; 6)/ (7; 11 1);
* (7,1, 1) happens in 1/3-fraction of rounds but is not a Nash equilibrium

* Do not converge in empirical distribution or last-iterate

* Experiments also show such non-convergence for no-regret mean-based
algorithms such as MWU



M = 2: Proof of Convergence

* Intuition:

* First price auction (with fixed values and M = 2) can be solved by iterative
elimination of dominated strategies. [Hon-Snir-Monderer-Sela 1998]

* Proof Sketch:
 Example: 3 bidders with the same value v!. NE: all bid v — 1.
e b E{0,1, ..., v —2, vl — 1},

A learning algorithm is (y;)-mean-based if

* Challenge: randomness of algorithmes. ai_ (") —aiy(b)>Vy, = Prob(ibidshinroundt) <y,

* A mean-based algorithm may pick a dominated strategy with a positive probability.

* Technique: time-partitioning and repeated use of Azuma’s inequality. [Feng-
Guruganesh-Liaw-Mehta 2021]



M | Time-average | Last-iterate

Summary & >3 / /
. v X
Open Questions . .

* Any mean-based learning algorithms converge to the Nash equilibrium in a first price
auction with bidders having fixed values, if there are more than one highest-value bidders.

* Open question #1: what’s the convergence rate?

 If there is only one highest-value bidder, not all mean-based learning algorithms converge.

* Open question #2: better algorithms that always converge?

* Open question #3: the Bayesian setting of the first price auction.

* [Feng-Guruganesh-Liaw-Mehta, 2021]: two uniform[0, 1] i.i.d. bidders + mean based
algorithms with uniform exploration phase => converge to BNE.

Thanks!



