Nash Convergence of Mean-Based Learning Algorithms in First Price Auctions

WWW 2022

Xiaotie Deng Peking University slides credit to

Xinyan Hu Peking University

Tao Lin Harvard University

Weiqiang Zheng Yale University

Internet Advertising Auctions

- Second Price Auctoin (SPA): highest bidder wins, pays the 2nd highest bid
- First Price Auction (FPA): highest bidder wins, pays its own bid

Flights - Kiwi.com

Ad · https://www.kiwi.com/flights •

Flights - Kiwi.com

Find the Best Prices & Join More Than 6.7 Million Others Who Travelled With Kiwi.com!

Main Questions:

How will bidders behave in repeated first price auctions if they use **online-learning algorithms** to learn to bid?

(cf., single bidder learning)

Will they converge to a **Nash equilibrium**?

Our Results

A wide class of online learning algorithms ("mean-based") converge to a Nash equilibrium in the first price auction (under some assumptions on bidders' values).

Online Learning in Repeated FPA

Suppose all values and bids are in a **discrete** space normalized to a bounded non-negative integer space {0, 1, ..., V}.

Online Learning in Repeated FPA

Suppose all values and bids are in a **discrete** space normalized to a bounded non-negative integer space {0, 1, ..., V}.

Mean-Based Learning algorithm

[Braverman-Mao-Schneider-Weinberg 2018, Feng-Guruganesh-Liaw-Mehta 2021]

• Let $\alpha_t^i(b)$ be the average utility of bidder *i* if it bids *b* in the first *t* rounds:

$$\alpha_t^i(b) = \frac{1}{t} \sum_{s=1}^t u_s^i(b, b_s^{-i})$$

• A learning algorithm is (γ_t) -mean-based if

 $\alpha_{t-1}^{i}(b') - \alpha_{t-1}^{i}(b) > V\gamma_{t} \implies Prob(i \text{ bids } b \text{ in round } t) \le \gamma_{t}$

where $\gamma_t \rightarrow 0$

Examples:

- Greedy (Follow the Leader)
- No-regret mean-based learning algorithms
 - ϵ -Greedy
 - Multiplicative Weights Update (MWU)
 - Follow the Perturbed Leader

Nash Equilibria of (One-Shot) FPA

- Assume each bidder bids strictly smaller than its own value.
- Nash equilibria (omitting corner cases and other bidders):

М	highest-value bidders	second-highest-value bidders
≥ 3	$v^1 - 1$	any
2	$v^1 - 1$ or $v^1 - 2$	any
1	$v^{M+1} = v^2$	$v^{M+1} - 1 = v^2 - 1$

Main Results (Informal)

М	Time-average	Last-iterate	
≥ 3	\checkmark	\checkmark	N
2	\checkmark	X	A:√ <
1	X	X	

M = # bidders with the highest value v¹.
C: Almost surely converge.

X: May not converge.

- Time-average:
 - (traditional) the empirical distributions of bids approach a Nash equilibrium.
 - (ours) the fraction of rounds where bidders play a Nash equilibrium approaches 1.
- Last-iterate:
 - bidders' mixed strategy profile approaches a Nash equilibrium.

Main Results (Formal)

• If $M \ge 3$, then with probability 1, **both of** the following happen:

•
$$\lim_{t \to \infty} \frac{1}{t} \sum_{s=1}^{t} I[b_s^i = v^1 - 1, \forall i \in M^1] = 1$$

•
$$\forall i \in M^1$$
, $\lim_{t \to \infty} x_t^i = 1_{v^1 - 1}$

• If M = 2, then with probability 1, **one of** the following happen:

•
$$\lim_{t \to \infty} \frac{1}{t} \sum_{s=1}^{t} I[b_s^i = v^1 - 1, \forall i \in M^1] = 1$$
, and $\forall i \in M^1, \lim_{t \to \infty} x_t^i = 1_{v^1 - 1}$

•
$$\lim_{t \to \infty} \frac{1}{t} \sum_{s=1}^{t} \mathbb{I}[b_s^i = v^1 - 2, \forall i \in M^1] = 1$$

• If M = 1, there exists a mean-based algorithm that does not converge to NE, either in last-iterate or in time-average.

M = 1: Non-Convergence

- Three bidders with $v^1 = 10$, $v^2 = v^3 = 7$
- Each player uses the **Follow the Leader** algorithm (0-mean based)
- They may generate the following bidding path $(b_t^1, b_t^2, b_t^3)_{t\geq 1}$

• (7, 6, 1), (7, 1, 6), (7, 1, 1), (7, 6, 1), (7, 1, 6), (7, 1, 1), ...

- (7, 1, 1) happens in 1/3-fraction of rounds but is not a Nash equilibrium
- Do not converge in empirical distribution or last-iterate

 Experiments also show such non-convergence for no-regret mean-based algorithms such as MWU

$M \geq 2$: Proof of Convergence

- Intuition:
 - First price auction (with fixed values and $M \ge 2$) can be solved by **iterative** elimination of dominated strategies. [Hon-Snir-Monderer-Sela 1998]
- Proof Sketch:
 - Example: 3 bidders with the same value v^1 . NE: all bid $v^1 1$.
 - $b \in \{0, 1, \dots, v^1 2, v^1 1\}.$
- Challenge: randomness of algorithms. $\alpha_{t-1}^{i}(b') \alpha_{t-1}^{i}(b) > V\gamma_{t} \Rightarrow Prob(i \text{ bids } b \text{ in round } t) \le \gamma_{t}$

A learning algorithm is (γ_t) -mean-based if

- A mean-based algorithm may pick a dominated strategy with a positive probability.
- Technique: time-partitioning and repeated use of Azuma's inequality. [Feng-Guruganesh-Liaw-Mehta 2021]

Summary & Open Questions

М	Time-average	Last-iterate
≥ 3	\checkmark	\checkmark
2	\checkmark	X
1	×	X

- Any mean-based learning algorithms converge to the Nash equilibrium in a first price auction with bidders having fixed values, if there are more than one highest-value bidders.
 - **Open question #1:** what's the convergence rate?
- If there is only one highest-value bidder, not all mean-based learning algorithms converge.
 - **Open question #2:** better algorithms that always converge?
- **Open question #3:** the Bayesian setting of the first price auction.
 - [Feng-Guruganesh-Liaw-Mehta, 2021]: two uniform[0, 1] i.i.d. bidders + mean based algorithms with uniform exploration phase => converge to BNE.