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• Second Price Auctoin (SPA):  highest bidder wins, pays the 2nd highest bid
• First Price Auction (FPA):  highest bidder wins, pays its own bid



Strategic bidding in FPA
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Online learning! 
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Main Questions: 
How will bidders behave in repeated first price auctions
if they use online-learning algorithms to learn to bid?

(cf., single bidder learning)

Will they converge to a Nash equilibrium?

Our Results

A wide class of online learning algorithms (“mean-based”) 
converge to a Nash equilibrium in the first price auction

(under some assumptions on bidders’ values).



Online Learning in Repeated FPA

Each bidder 𝑖
• has a fixed value 𝑣#;
• runs an online learning

algorithm (mean-based).

• Bidder who bids the highest
(random tie-breaking) wins, pays
its own bid.

• Utility 𝑢$# of bidder 𝑖 at round 𝑡:
• 𝑣# − 𝑏$#, for the winner;
• 0, for a loser.

Nash equilibrium of
one-shot auction

Bidder 𝑖 submits a bid 𝑏$#
chosen by its algorithm.

Bidders get feedback from the
auction to update algorithms.

Infinite horizon:

converge?

Suppose all values and bids are in a discrete space normalized to a bounded non-negative integer space {0, 1, … , 𝑉}.

Round 𝑡 ≥ 1

𝑁 bidders
FPA            single item
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Mean-Based Learning algorithm
• Let 𝛼45 𝑏 be the average utility of bidder 𝑖 if it bids 𝑏 in the first 𝑡 rounds: 

𝛼45(𝑏) =
1
𝑡
)
678

4

𝑢65 𝑏, 𝑏695

• A learning algorithm is (𝛾4)-mean-based if 

𝛼4985 𝑏: − 𝛼4985 𝑏 > 𝑉𝛾4 ⇒ 𝑃𝑟𝑜𝑏 𝑖 bids 𝑏 in round 𝑡 ≤ 𝛾4

where 𝛾4 → 0 Examples:
• Greedy (Follow the Leader)
• No-regret mean-based learning algorithms

• 𝜖-Greedy
• Multiplicative Weights Update (MWU)
• Follow the Perturbed Leader

[Braverman-Mao-Schneider-Weinberg 2018, Feng-Guruganesh-Liaw-Mehta 2021]



Nash Equilibria of (One-Shot) FPA
• Let 𝑣! = 𝑣" = ⋯ = 𝑣# > 𝑣#$! = ⋯ = 𝑣#! > ⋯ ≥ 𝑣%.

• Assume each bidder bids strictly smaller than its own value.
• Nash equilibria (omitting corner cases and other bidders):

𝑀 highest-value bidders second-highest-value bidders

≥ 3 𝑣! − 1 any

2 𝑣! − 1 or 𝑣! − 2 any

1 𝑣"#! = 𝑣$ 𝑣"#! − 1 = 𝑣$ − 1

second-highest-value bidders (if exist)highest-value bidders



𝑀 = # bidders with the
highest value 𝑣!.

✓: Almost surely converge.
✗: May not converge.

𝑀 Time-average Last-iterate

≥ 3 ✓ ✓

2 ✓ ✗

1 ✗ ✗

Main Results (Informal)

• Time-average:
• (traditional) the empirical distributions of bids approach a Nash equilibrium.
• (ours) the fraction of rounds where bidders play a Nash equilibrium approaches 1.

• Last-iterate:
• bidders’ mixed strategy profile approaches a Nash equilibrium.



Main Results (Formal)
• If 𝑀 ≥ 3, then with probability 1, both of the following happen:

• lim
4→=

8
4
∑6784 Ι[𝑏65 = 𝑣8 − 1, ∀𝑖 ∈ 𝑀8] = 1

• ∀𝑖 ∈ 𝑀8, lim
4→=

𝑥45 = 1>"98

• If 𝑀 = 2, then with probability 1, one of the following happen:

• lim
4→=

8
4
∑6784 Ι[𝑏65 = 𝑣8 − 1, ∀𝑖 ∈ 𝑀8] = 1, and ∀𝑖 ∈ 𝑀8, lim

4→=
𝑥45 = 1>"98

• lim
4→=

8
4
∑6784 Ι[𝑏65 = 𝑣8 − 2, ∀𝑖 ∈ 𝑀8] = 1

• If 𝑀 = 1, there exists a mean-based algorithm that does not converge to NE, 
either in last-iterate or in time-average. 



𝑀 = 1 : Non-Convergence
• Three bidders with 𝑣8 = 10, 𝑣? = 𝑣@ = 7

• Each player uses the Follow the Leader algorithm (0-mean based)

• They may generate the following bidding path 𝑏48, 𝑏4?, 𝑏4@ AB8

• (7, 6, 1), (7, 1, 6), (7, 1, 1), (7, 6, 1), (7, 1, 6), (7, 1, 1), …

• (7, 1, 1) happens in 1/3-fraction of rounds but is not a Nash equilibrium

• Do not converge in empirical distribution or last-iterate

• Experiments also show such non-convergence for no-regret mean-based
algorithms such as MWU



𝑀 ≥ 2: Proof of Convergence
• Intuition:
• First price auction (with fixed values and 𝑀 ≥ 2) can be solved by iterative 

elimination of dominated strategies. [Hon-Snir-Monderer-Sela 1998]

• Proof Sketch:
• Example: 3 bidders with the same value 𝑣8. NE: all bid 𝑣8 − 1.
• 𝑏 ∈ {0, 1, … , 𝑣8 − 2, 𝑣8 − 1}.

• Challenge: randomness of algorithms.
• A mean-based algorithm may pick a dominated strategy with a positive probability.

• Technique: time-partitioning and repeated use of Azuma’s inequality. [Feng-
Guruganesh-Liaw-Mehta 2021]

—— ———



Summary &
Open Questions
• Any mean-based learning algorithms converge to the Nash equilibrium in a first price 

auction with bidders having fixed values, if there are more than one highest-value bidders.

• Open question #1: what’s the convergence rate?

• If there is only one highest-value bidder, not all mean-based learning algorithms converge.

• Open question #2: better algorithms that always converge?

• Open question #3: the Bayesian setting of the first price auction.
• [Feng-Guruganesh-Liaw-Mehta, 2021]: two uniform[0, 1] i.i.d. bidders  +  mean based 

algorithms with uniform exploration phase  =>  converge to BNE. 

M Time-average Last-iterate
≥ 3 ✓ ✓
2 ✓ ✗
1 ✗ ✗

Thanks!


