From Monopoly to Competition: Optimal Contests Prevail

Xiaotie Deng Peking University

How should conference organizers design best paper award contests, Motivating question: when there are multiple conferences competing for paper submissions? A Contest Main Model: Compitition among Contests **Motivation:** • Oftentimes in practice, there are *multiple* contests available to the contestants at the same time. Model: • $m \ge 2$ contest designers, $n \geq 1$ contestants. • Each contest designer *i* chooses a contest $C_i \in S_i$ from a set of contests S_i with reward $R_i > 0$. • Each contestant chooses a contest to participate in. • The contestants participating in the same contest play the single contest game (described on the left). Notes: $-e_1$ Contest designers can be asymmetric: different S_i and R_i Ψ $(\bullet \bullet)$ $-e_2$ • Contestants are *symmetric*. In particular, they play a symmetric mixed-strategy equilibrium in the game of (••` $R - e_3$ choosing contests to participate in. (\cdot) $(\bullet \bullet)$ R_1 $(\bullet \bullet)$ \bullet Ψ (••` R_2 Two competing factors: effort vs. participation • A contest that requires less efforts from the contestants (e.g., a Tullock contest with small τ) encourages more participation.

- from the contestants.

$$\frac{e_j^\tau}{\sum_k e_k^\tau}$$

• Abstraction of a contest in real life: sports competition, best paper award, etc. In a contest, there are: • 1 contest designer, >=1 contestants. • The designer has a prize/reward. • Contestants exert *efforts* to compete for the reward. • The designer wants to maximize the sum of efforts • Each contestant wants to maximize the (expected) reward he/she gets - the effort. Examples of a contest: • All Pay Auction (APA): the contestant with max e_i wins the prize. (breaks ties randomly) • Tullock Contest: parameterized by $\tau \ge 0$; each contestant wins the prize with probability **Lemma** [1]: APA induces more efforts than any Tullock contest does, regardless of the number of contestants.

Yotam Gafni Technion

Ron Lavi University of Bath

Tao Lin

Harvard University

Hongyi Ling ETH Zurich

Main Result: Optimal Contests Prevail

Theorem 1: It is an equilibrium for the contest designers to choose the contest $C_i^* \in S_i$ that is the optimal contest in the single contest game.

(optimal: maximizing the sum of efforts)

For example, if $S_i = \{APA, Tullock\}, then every$ designer will choose APA.

Answer to the motivationg question: There is no need for the organizers to consider the competition from other conferences!

In other words, effort dominates participation!

Other Results

Theorem 2 (uniqueness): The equilibrium in Theorem 1 is *dominant* and *unique*, under the following natural assumption:

• every contest $C_i \in S_i$ has "monotonically decreasing" utility": in the single contest game, when the number of contestants increases, the expected utility of each contestant decreases.

Theorem 3 (Pareto-optimality): The equilibrium in Theorem 1 is *Pareto-optimal* for the designers.

Observation 4 (asymmetric contestants): The conclusion of Theorem 1 breaks if the contestants are *asymmetric*, in the sense that:

- They play an asymmetric participation equilibrium.
- Or they have different unit costs of effort c_i (exerting effort e_i costs the contestant $c_i e_i$).

Reference

[1] Baye, M. R.; Kovenock, D.; and De Vries, C. G. 1996. The all-pay auction with complete information. Economic Theory, 8(2): 291–305.

