From Monopoly to Competition: Optimal Contests Prevail

Xiaotie Deng	Yotam Gafni	Ron Lavi	Tao Lin	Hongyi Ling
Peking University	Technion	University of Bath	Harvard University	ETH Zurich

Motivating question:
How should conference organizers design best paper award contests,
when there are multiple conferences competing for paper submissions?

A Contest

- Abstraction of a contest in real life sports competition, best paper award, etc

In a contest, there are:

- 1 contest designer, $>=1$ contestants.
- The designer has a prize/reward
- Contestants exert efforts to compete for the reward.
- The designer wants to maximize the sum of efforts from the contestants.
- Each contestant wants to maximize the (expected) reward he/she gets - the effort.

Examples of a contest:

- All Pay Auction (APA): the contestant with $\max _{j} e_{j}$ wins the prize. (breaks ties randomly)
- Tullock Contest: parameterized by $\tau \geq 0$; each contestant wins the prize with probability

$$
\frac{e_{j}^{\tau}}{\sum_{k} e_{k}^{\tau}}
$$

Lemma [1]: APA induces more efforts than any Tullock contest does, regardless of the number of contestants.

Main Model: Compitition among Contests

Motivation:

- Oftentimes in practice, there are multiple contests available to the contestants at the same time.

Model:

- $m \geq 2$ contest designers, $\quad n \geq 1$ contestants.
- Each contest designer i chooses a contest $C_{i} \in S_{i}$ from a set of contests S_{i} with reward $R_{i}>0$.
- Each contestant chooses a contest to participate in
- The contestants participating in the same contest play the single contest game (described on the left).

Notes:

- Contest designers can be asymmetric: different S_{i} and R_{i}
- Contestants are symmetric. In particular, they play a symmetric mixed-strategy equilibrium in the game of choosing contests to participate in

Two competing factors: effort vs. participation

- A contest that requires less efforts from the contestants (e.g., a Tullock contest with small τ) encourages more participation

Main Result: Optimal Contests Prevai

Theorem 1: It is an equilibrium for the contest designers to choose the contest $C_{i}^{*} \in S_{i}$ that is the optimal contest in the single contest game.
(optimal: maximizing the sum of efforts)
For example, if $S_{i}=\{\mathrm{APA}$, Tullock $\}$, then every designer will choose APA.

> Answer to the motivationg question:
> There is no need for the organizers to consider the competition from other conferences!

In other words, effort dominates participation!

Other Result

Theorem 2 (uniqueness): The equilibrium in
Theorem 1 is dominant and unique, under the
following natural assumption

- every contest $C_{i} \in S_{i}$ has "monotonically decreasing utility": in the single contest game, when the number of contestants increases, the expected utility of each contestant decreases

Theorem 3 (Pareto-optimality): The equilibrium in Theorem 1 is Pareto-optimal for the designers

Observation 4 (asymmetric contestants): The conclusion of Theorem 1 breaks if the contestants are asymmetric, in the sense that

- They play an asymmetric participation equilibrium
- Or they have different unit costs of effort c_{j} (exerting effort e_{j} costs the contestant $c_{j} e_{j}$).

Reference

[1] Baye, M. R.; Kovenock, D.; and De Vries, C. G. 1996. The all-pay
auction with complete information. Economic Theory, 8(2): 291-305.

