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Will GDP grow next season?
Will it rain tomorrow? 

Will stock price ↗?
Is this image a cat or a dog?
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Background:  Forecast Aggregation
• A principal wants to predict an unknown event 𝜔 ∈ 0, 1
• He/she collects (probabilistic) predictions from 𝑛 ≥ 2

experts:                      𝑟!, … , 𝑟" ∈ 0, 1

• Q: How to aggregate these predictions into a single one?
• 𝑝 = 𝑓 𝑟!, … , 𝑟" ∈ 0, 1

A common approach in the literature -- Bayesian model:

𝜔, 𝑠!, … , 𝑠" ∼ 𝑃

• 𝑠# ∈ 𝑆# is a private signal observed by expert 𝑖
• Predictions are posterior: 𝑟# = 𝑃 𝜔 = 1 𝑠#

Then, the theoretically “best” way to aggregate the 
predictions is the Bayes rule:

𝑝∗ = 𝑓∗ 𝑟!, … , 𝑟" = 𝑃 𝜔 = 1 𝑟!, … , 𝑟")

“best”: minimizing the squared error 𝔼 𝑓(𝒓) − 𝜔|%]

But in practice we hardly know 𝑃!
(instead, we have samples)

Main Question:  Sample Complexity
• Oftentimes in practice we have samples from 𝑃 (samples of 

experts’ predictions and the realization of the event):

𝑆& = 𝑟!
! , … , 𝑟"

! , 𝜔 ! , … , 𝑟!
& , … , 𝑟"

& , 𝜔 &

• Can we learn a good aggregator :𝑓 = :𝑓'! from 𝑆& ? 
• More specifically,

 

How many samples do we need to learn an 𝜀-optimal aggregator 
"𝑓 with probability at least 1 − 𝛿? 

Theorem 1 (General Case)
Assume 𝑆$ = 𝑚. The sample complexity of forecast aggregation is: 
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Theorem 2 (Conditional Independence)
If experts’ signals 𝑠!, … , 𝑠% are independent conditioned on 𝜔, 
then: 
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This is independent of # of experts and signals!

Proof idea 1: Reduction to Distribution Learning
We reduce forecast aggregation to/from the distribution learning 
problem:
• given samples from an unknown discrete distribution 𝐷, 

estimate 𝐷 within total variation distance 𝜀./. 

• has sample complexity Θ 0 1 2*3 !/5
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Lemma 1 (informal):

𝔼 7𝑓 𝒓 − 𝑓∗ 𝒓
#

≤ 𝜀 ⇒ ||?𝐷 − 𝐷||! ≤ 𝑂 𝜀 =: 𝜀'(

Future Work
• Close the gap between 𝜀% and 𝜀: 
• Conjecture: should be 𝜀

• The case between general distributions and cond. Ind. 
distributions?

• Recruiting more experts? (Obtaining samples is difficult.  
Finding more people is easy. Can that help with 
aggregation?)

• Continuous distributions, other loss functions, etc.

Take-Away Message
Forecast aggregation in general is as difficult as distribution learning. 

Proof idea 2: Pseudo-Dimension
• In the cond. ind. case, the optimal aggregator has a simple 

form:  Let 𝑝 = 𝑃 𝜔 = 1 ,

𝑓∗ 𝑟!, … , 𝑟" =
1
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• We prove that the pseudo-dimension of the class of loss 

functions associated with the aggregators of the form 
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is bounded by 𝑑 = 𝑂 1 .

• This means that the empirically optimal aggregator is 𝜀-
optimal, if the number of samples is at least 
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