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ABSTRACT

In this paper, we revisit the sponsored search auction as a repeated

auction. We view it as a learning and exploiting task of the seller

against the private data distribution of the buyers. We model such a

game between the seller and buyers by a Private Data Manipulation

(PDM) game: the auction seller first announces an auction for which

allocation and payment rules are based on the value distributions

submitted by buyers. The seller’s expected revenue depends on the

design of the protocol and the game played among the buyers in

their choice on the submitted (fake) value distributions.

Under the PDM game, we re-evaluate the theory, methodology,

and techniques in the sponsored search auctions that have been

the most intensively studied in Internet economics.
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1 INTRODUCTION

The sponsored search auction (SSA) refers to the commercialization

model of a search engine to sell a click on an advertisement slot by

its users. Those advertisements are presented in web-links showing

products and their prices of the advertisers along with natural

search results. SSA refers to the mechanism chosen by the seller for

the advertisers to compete for the chance to pay for the placement

of their ads along with the search results.

Google, arguably the most successful search engine, has tradi-

tionally employed the generalized second price (GSP) auction for

its SSA. The bidders are charged according to the bid (per quality

unit) one rank lower than its own in the sorted bid list [22, 41].

Despite many other pricing and allocation mechanisms have been

tried [16, 21, 25, 43], the GSP has sustained the test of competi-

tion to become one of the key factors for Google’s success in the

sponsored search market in the early years [8]. It has since become
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the most commonly used auction mechanism for sponsored search,

and can reasonably be named the mother of all sponsored search

auctions.

Taking into consideration of the repeated nature of SSA, a data

analyst would examine every day’s revenue with a report on the

income derived from each keyword out of millions of clicks. The

algorithm takes (bid) data-in and generates (revenue) data-out. In-

between, a natural task of the seller is to maximize the expected

revenue based on a longer and longer bid sequence from the buyers.

We are interested in such a data engineer’s design task for to-

day’s market maker. As the auction takes place billions of times

a day, the data engineer has a rich recorded history of advertis-

ers’ bidding behavior. With this information in relation with the

value distribution of each advertiser for the available slots, the mar-

ket maker would be expected to derive as much revenue as in the

optimal auction of the Myerson style.

We model such a process as a two-stage operation. The market

maker first announces an auction, such as the Myerson style op-

timal auction, whose allocation and payment rules may depend

on value distributions of buyers. Then buyers submit value dis-

tributions. However, the auction that combines these two stages

may not work truthfully, because buyers may cheat to report fake

value distributions for eventually better expected utilities. This may

be a marginal case in general auctions, but it can become a key

challenge in the SSA as the game can be repeated billions of times

on the major search engines. It is under such a situation we have an

environment where the auction participants with their own private

value distributions can manipulate their private value data.

In summary, since each advertiser could bid a distribution differ-

ent from their private value distribution to gain more in an SSA, all

their individual efforts result in an equilibrium in such a two-stage

game led by the market maker. We call this game a Private Data

Manipulation (PDM) game. In this article, we make a first step in

understanding the revenue optimization issue against the strategic

behavior of advertisers in the second stage of the game.

1.1 Our Results and Techniques

First of all, we consider the repeated auction of multiple items in

the sponsored search auctions. We model it by a Private Data Ma-

nipulation (PDM) game where the strategy of advertisers (bidders)

is to submit distributions to the market maker (auctioneer) who

run (prior-dependent) auctions, according to the submitted distribu-

tions. We prove that under this PDM game, the originally truthful

and revenue-maximizing auction (Myerson’s, Mye) is no longer

truthful. Every equilibrium in this game has a 1-to-1 mapping to

the equilibrium of the untruthful and sub-optimal generalized first-

price auction (GFP). The auctioneer obtains the same revenue under

the respective equilibrium ofMye and GFP. Then combined with the

classical revenue-equivalence theorem, we conclude that Mye, GFP,

https://doi.org/10.1145/3366423.3380023
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GSP, and VCG auctions are equivalent under certain conditions

(see Figure 1).

From a technical perspective, the sponsored search auction fits

into the single-parameter environment, where the optimal auction,

given buyers’ distributions, is a Myerson style auction that achieves

the maximum achievable expected revenue for the market maker

among all truthful auctions. Most importantly, the expected utility

of each agent in Mye under PDM turns out to be of the same form

as that of GFP, allowing us to establish the equivalence between

Mye and GFP in all single-parameter environments, including SSA.

In summary, our results develop another class of revenue equiv-

alence theorem beyond that of single-item auction [34, 40] towards

the sponsored search auction, including those for VCG [16, 25,

43] and Forward Looking Nash equilibrium [11] in GFP [21] and

GSP [22, 41] to cover a realistic repeated auction setting among

Internet scale applications. In this way, our results give a revenue

justification for Google’s recent switch from GSP to First Price

Auctions [38] in the highly repeated auction SSA.

1.2 Related Work

There has been a considerable amount of work on the sponsored

search auction, one can refer to [29] for a survey. Among all practi-

cally applied auctions for sponsored search, the generalized second-

price auction stands out attracting themost attention in research [12,

22, 41]. A significant fraction has focused on social welfare proper-

ties of equilibria [14, 24, 30, 31] where the goal is to measure the

price of anarchy. Others have studied revenue properties [23, 32, 42]

where the goal is to measure the guaranteed revenue out of different

equilibrium concepts.

The optimal auction design dates back to the seminal work

from [34], which establish the optimal auction under the Bayesian

setting of a prior value distribution for each buyer. In practice, the

prior information does not come for free. This initiates the study of

sample complexity [6, 7, 13, 17, 26, 28, 39], in which the auctioneer

has a number of samples from the prior, and the goal is to learn a

mechanism with those samples to approximate the optimal revenue.

Another line of research focus on repeated auction scenario [3, 9],

with the goal of minimizing regret, for bandit settings [4, 5, 20, 35],

or settings with strategic bidder [1, 2, 10].

The idea of agent manipulation against learning is not only ap-

plicable in multi-agent auction design [18, 19, 36, 40], but can also

become a common analytic tool in more general settings. We ex-

pect that this approach can find further applications in the future.

Besides modeling the real-world practice, our private data manipu-

lation is important for the protection of one’s private data against

effort trying to extract it for commercial use.

1.3 Organization of the paper

In Section 2, we set up the single parameter auction design under the

private data manipulation model. In Section 3, we derive the main

technical results showing that the optimal Myerson style auction

and the generalized first auction are equivalent. We conclude in

Section 4 with an array of relationships (see Figure 1) among GFP,

GSP, VCG and Mye under the private data manipulation game.

Figure 1: Equivalence between auctions under PDM

2 PRELIMINARY

Consider the setting where the market designer hasm advertise-

ment slots, and n bidders who are interested in these slots. Each

advertisement slot j has a quality of γj . Each bidder i has a value
vi per quality over these slots. Therefore, if bidder i is allocated
slot j, her value is viγj . Without loss of generality we assume that

γ1 ≥ γ2 ≥ · · · ≥ γm . We use ®v−i = (v1,v2, . . . ,vi−1,vi+1, . . . ,vn )
to denote the value vector without vi .

Agent i has a value of vi per quality at the point of auction,

which is chosen from a distribution Fi by nature. Different from the

traditional Bayesian setting where the distributions Fi s’ are known
to the auctioneer, here Fi is known to agent i itself but not known to
the auctioneer.

1
Weuse F =

∏n
i=1 Fi to denote the joint distribution,

and F−i =
∏

j,i Fj to denote the joint distribution without Fi . Also
we assume that Fi s’ are jointly independent distributions.

Prior Information Representation. For a random variable v ∼ G,
we use G(·) to denote the cumulative distribution function, and

д(·) to denote the corresponding probability density function. If an

agent’s value v ∼ G, we call this v the value representation of the

distribution. An alternative representation of prior information is to

introduce the concept of quantile. Basically, given value distribution
G, the quantile q = 1 − G(v) represents the probability that a

buyer will have a value at least v . Thus when we use quantile q
as the random variable, we map it to the value by the function

v(q) = G−1(1 − q). Clearly, v(q) is monotone non-increasing in

q. An important property of quantile is that, no matter what the

distribution G is, q is always chosen uniformly in [0, 1] interval.

The virtual value representation of a random variablev is defined

as follows: take a value v as input, the representation outputs value

v −
1−G(v)
д(v) . Similarly, to represent this mapping from a quantile q

to a virtual value representation, we just let the mapping to take

value

v(q) −
1 −G(v(q))

д(v(q))
= v(q) −

q

д(v(q))
= v(q) + qv ′(q).

An alternative derivation is to define the revenue curve function

R(q) = qv(q), then we have:

R′(q) = v(q) + qv ′(q).

1
We assume that Fi is not known to other bidders, either. As we will discuss later,

each bidder will choose a distribution to announce based on what others announce.
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So we also denote the virtual value by ϕ(q) = R′(q). A distribution

is regular if ϕ(q) is monotone non-increasing in q, or equivalently,
R(q) is concave.

Throughout the paper, we will use the CDF G, the value func-
tion v(·), or virtual value function ϕ(·) to denote a distribution

interchangeably.

2.1 Single-Parameter Environment

For simplicity and generality, we shift from the specific sponsored

search setting to the more general single-parameter environment.
There are n bidders and a set A ⊆ Rn+ of feasible allocations ®a =
(a1, . . . ,an ). The allocation to bidder i is ai , and the allocation to

other bidders is denoted by ®a−i . Assume that A is downward-closed,
that is, for each i and any ®a = (ai , ®a−i ) ∈ A, (0,a−i ) ∈ A. The
sponsored search setting is a special case where ai stands for the
(expected) quality of ad slot given to i .

Each bidder i has a value vi ∼ Fi for receiving one unit of al-

location. A mechanismM associated with the prior F consists of

an allocation rule ®X : Rn+ → A, and a payment rule ®P : Rn+ → Rn+.

Bidders submit bids
®b = (bi , ®b−i ) to represent their willingness

to pay per unit, then bidder i is allocated Xi (®b) units, pays Pi (®b),

obtaining a utility of Xi (®b)vi − Pi (®b). Denote the interim alloca-

tion by xi (vi ) = E ®v−i∼F−i [Xi (vi , ®v−i )], and the interim payment by

pi (vi ) = E ®v−i∼F−i [Pi (vi , ®v−i )].
We say a mechanism M is Bayesian-incentive-compatible (BIC),

if the following constraints are satisfied:

vixi (vi ) − pi (vi ) ≥ vixi (v
′
i ) − pi (v

′
i ), ∀vi ,v

′
i , i .

We say a mechanism M is Bayesian-individually-rational (BIR), if

the following constraints are satisfied:

vixi (vi ) − pi (vi ) ≥ 0, ∀vi , i .

In addition, we assume pi (0) = 0.

Lemma 2.1 ([27]). AmechanismM is BIC and BIR if the allocation
rule and payment rule satisfy:

• Xi (vi , ®v−i ) is monotone non-decreasing in vi .
• Pi (®v) = viXi (®v) −

∫ vi
0

Xi (u, ®v−i )du.

Sometimes we express allocation and payment in the quantile

space, and use superscript (M, F ) to indicate that they are deter-

mined by mechanismM with F as prior. Thus we have x
(M,F )
i (q) =

xi (vi (q)), p
(M,F )
i (q) = pi (vi (q)), etc. Then the expected payment

and the revenue of a BIC mechanism can be conveniently expressed

in terms of virtual value ϕ(q):

Lemma 2.2 ([27]). In a BIC and BIR mechanismM, if agents bid
their true values, then agent i’s expected payment equals to

Eq [p
(M,F )
i (q)] = Eq [ϕi (q)x

(M,F )
i (q)]. (1)

Thus, the revenue is equal to the expected virtual welfare:
n∑
i=1

Eqi [p
(M,F )
i (qi )] = E®q [

n∑
i=1

ϕi (qi )X
(M,F )
i (®q)]. (2)

The Myerson’s auction. We will show in Section 3.1 that a gener-

alization (hence the abbreviation Mye) of the classical single-item

Myerson’s optimal auction achieves the maximum revenue under

BIC and BIR constraints with respect to the prior F .

The generalized first-price auction. A generalized first-price auc-

tion
2
(GFP) is a natural generalization of a first-price auction. The

allocation rule is defined by ®X (®b) ∈ argmax®a∈A
∑n
i=1 biai , and

the payments are Pi (®b) = biXi (®b). Contrary to Mye, GFP is prior-

independent and not BIC.

2.2 Private Data Manipulation Model

When prior-dependent auctions such as Mye are used in practice,

an issue emerges: the true prior information F is not known to the

auctioneer. As an alternative, the auctioneer will observe the possi-

bly manipulated data, reported by bidders. One can interpret the

manipulation procedure as follows: given a samplev drawn from F ,
the manipulation maps it to a bid v̂ , which follows an underlying

distribution F̂ . With enough data, we assume the auctioneer can

reconstruct or approximate well the manipulated distribution F̂ .
Throughout the paper, we will use notions with ·̂ for the manipu-

lated data, (for example, F̂ for the distribution,
ˆϕ(·) for its virtual

value distribution).

For any mechanismM that takes prior into account, we consider

the following two-stage PDM game scenario:

• The auctioneer releases the mechanismM used in auction

before the auction starts.

• Each agent i reports F̂i by bidding v̂i such that v̂i ∼ F̂i .
• The auctioneer runs M with reported manipulated distri-

butions F̂i as prior information, allocates and charges each

agent with respect to the outcome ofM.

The two stages are the first and second part of the above scenario.

The third part summarizes the outcome in the two-stage PDM game.

In a PDM game, the agents will strategically respond to the

mechanism. Their strategy sets are defined as follows:

Definition 2.3 (Strategy Set). Let S =
∏n

i=1 Si be the strategy
set of all agents, where Si is the strategy set of agent i . A strategy
si ∈ Si consists of:

• v̂i : [0, 1] → R+, the manipulated distribution;
• σi : a permutation3 of [0, 1] such that agent i bids v̂i (q) when
her true value isvi (σi (q)). We require thatσi (Uniform[0, 1]) =

Uniform[0, 1].

The introduction of σi (·) is necessary because v̂i (·) only defines

the overall bid distribution but does not describe how values are

mapped to bids, and σi (·) allows an agent to choose the mapping

arbitrarily, while keeping the distribution v̂i (·) unchanged.
Once the auctioneer has chosen a mechanism M to release, and

every agent has chosen her own manipulation strategy, we can

compute each agent i’s utility, as follows:

Ui (s1, . . . , sn ) = Eq
[
vi (σi (q)) · x

(M, F̂ )
i (q) − p

(M, F̂ )
i (q)

]
. (3)

We emphasize that x
(M, F̂ )
i (q) is the interim allocation when

agent i’s bid is v̂i (q), and others’ bids
ˆ®v−i follows F̂−i , under mech-

anismM with manipulated distribution F̂ =
∏n

i=1 F̂i as input.

2
Usually, “generalized-first-price auction” refers specifically to the auction in the

sponsored search setting. Here we use the term in a more general sense.

3
Similarly we can define random permutation where a true value can be mapped to a

distribution among bids, although it can be seen from Lemma 3.1 that the randomization

in unnecessary.
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In such a scenario of manipulation against private data elicitation,

we assume that agents are strategic and they will end up playing a

Nash equilibrium, which is defined as follows:

Definition 2.4 (Nash Eqilibrium). We say a manipulation
®s = (s1, s2, . . . , sn ) is a Nash equilibrium of mechanismM under the
Private Data Manipulation model if:

Ui (si , s−i ) ≥ Ui (ti , s−i )

for any strategy ti ∈ Si .

We show in the following lemma that for prior independent auc-
tions, in which the allocation and payment of M do not depend on

input distribution F̂ , the behaviors of bidders under the PDM setting

and the traditional Bayesian setting are strategically equivalent.

In the traditional Bayesian setting, the strategy of each bidder is

a value-to-bid mapping πi : R+ → R+. Let π
s
i : R+ → R+ denote

the value-to-bid mapping induced by the strategy si in the PDM

game (i bids π si (vi (q)) = v̂i (σ
−1
i (q)) when her true value is vi (q)).

Lemma 2.5. For any prior independent auctionsM, (s1, ..., sn ) is
a Nash equilibrium ofM under PDM if and only if (π s

1
, ..., π sn ) is a

Bayes-Nash equilibrium of M under the traditional Bayesian setting.

This lemma holds since manipulating distributions does not

affect the allocation and payment rules ofM.

3 EQUIVALENCE BETWEEN AUCTIONS IN

PRIVATE DATA MANIPULATION MODEL

In this section, we show that Myerson’s optimal auction and the

generalized first-price auction are equivalent when agents are able

to manipulate their value distributions. We consider Myerson’s

auction in PDM because it is natural for the auctioneer to choose

it, given the reported value distributions, since it extracts the most

revenue based on all available information. However, it turns out

that the originally optimal auction degenerates into a generalized

first-price auction in which no private data is used at all in a PDM

game. We start by reviewing how the optimal auction works.

3.1 The Myerson’s Auction

The Myerson’s optimal auction Mye in a single-parameter environ-

ment is a generalization of Myerson’s single-item auction in [34].

Denote the given prior by F .
If Fi ’s are regular, by Lemma 2.2, the revenue can be maximized

by choosing an allocation that maximizes the virtual welfare for

each bid vector ®v(®q). Formally,

®X (Mye,F )(®q) ∈ argmax®a∈A

n∑
i=1

aiϕi (qi ).

Payments are calculated according to Lemma 2.1. Such amechanism

is BIC by Lemma 2.1, because when vi increases, its virtual value
ϕ(qi (vi )) does not decrease by definition, then the allocation Xi is
monotone non-decreasing.

In addition, in order to maximize the virtual welfare, Mye will

never allocate positive units to a bidder with non-positive virtual

value; otherwise, setting her allocation to be zero weakly increases

the virtual welfare, without violating the feasibility constraint since

A is downward-closed. That is, we set a reserve price ri at which

the virtual value of bidder i is zero, and only allocate to agents

whose bids are above their respective reserve prices. We choose

the maximum reserve price ri when there are multiple solutions to

ϕvi (ri ) = 0. As a result,

ϕi (qi ) ≤ 0 =⇒ X
(Mye,F )
i (qi , ®q−i ) = 0, ∀®q−i . (4)

For irregular distribution Fi , Myerson’s auction will first “iron”

the distribution [34], transforming it into a regular distribution F i ,

and then run Mye with respect to F i .

3.2 Equivalence between Mye and GFP

Nowwe are ready to analyze how agents will behave under the Nash

equilibrium of Mye under PDM. Recall that the true distribution

F is no longer available, and Mye has to rely on agents’ strategic

distribution F̂ to allocate items and charge prices.

First we argue that without loss of generality, the set of best

responses can be limited as follows:

Lemma 3.1. For any s−i , choosing the strategy si = (v̂i (·),σi ) that
satisfy the following properties maximizes agent i’s utility:

(1) Identity permutation: σi (q) = q.
(2) Monotonicity (of virtual value): ∀q1 < q2, ˆϕi (q1) ≥ ˆϕi (q2).
(3) Non-negative virtual value: ˆϕi (q) ≥ 0.

Proof of Property 1 and 2. For 1, since the payment term in

(3) does not depend on σi , to maximize utility we only need to

maximize the first term, which is

∫
1

0

[
vi (σi (q)) · x

(Mye, F̂ )
i (q)

]
dq in

integral form.

According to the allocation rule of Mye, x
(Mye, F̂ )
i (q) is monotone

non-increasing in q, so by the rearrange inequality, we have:∫
1

0

[
vi (σi (q)) · x

(Mye, F̂ )
i (q)

]
dq ≤

∫
1

0

[
vi (q) · x

(Mye, F̂ )
i (q)

]
dq.

Thus σi (q) = q maximizes expected value.

For 2, if
ˆϕi is regular, then the monotonicity of

ˆϕi comes from the

regularity of F̂i . If ˆϕi is irregular, recall that the ironing procedure

will first “iron” F̂i to regular distribution F i , and then run the My-

erson’s auction. Note that here the virtual value function for agent

i is no longer defined on F̂i , but defined on F i which is a regular

distribution. Thus the monotonicity property still holds. □

Before proving property 3, we characterize the strategy set and

simplify some notations. By 1, we can omit σi and assume that si is
uniquely determined by v̂i (·), that is, bidders will always bid v̂i (q)
for valuevi (q). Then in the opposite direction to property 2, we will

show that each monotone virtual value function
ˆϕi (·) determines a

unique valid strategy, as follows:

Lemma 3.2. For any non-increasing function ˆϕ : [0, 1] → R, there
exists a unique distribution v̂(·) whose virtual value function is ˆϕ(·).

Proof. Since
ˆϕ is Riemann integrable, we can reconstruct its

revenue curve by integrating:qv̂(q) =
∫ q
x=0

ˆϕ(x)dx . Dividingq gives

the desired v̂(·).4 □

4
Although [qv̂(q)]′ is undefined at the discontinuous point of

ˆϕ(q), we can define it

to be
ˆϕ(q) because discontinuous points have measure zero and have no effect on the

expected utility.
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Consequently, no two different strategies si , s
′
i have manipula-

tion distributions with the same virtual value, given property 1.

Now we can use
ˆϕi solely to represent a strategy. Lemma 3.2 also

implies that “strategy
ˆϕi ” always exists as long as ˆϕi is monotone.

Using Lemma 2.2 to compute the expected payment, the expected

utility of agent i becomes:

Ui ( ˆϕi , ˆϕ−i ) = Eq

[
x
(Mye, F̂ )
i (q)

(
vi (q) − ˆϕi (q)

)]
. (5)

Proof of Property 3. Assume that
ˆϕi (·) is monotone non-increasing.

Suppose for some strategy,
ˆϕi (·) takes a negative value in [wi , 1] (or

(wi , 1]), then we define another virtual value function ϕ̃i (·), which
takes the following value:

ϕ̃i (q) =


ˆϕi (q) if q < wi ,
ˆϕi (q) · I[ ˆϕi (q) > 0] if q = wi ,

0 if q > wi .

The new strategy ϕ̃i (·) is valid because ϕ̃i (·) is also monotone.

If
ˆϕi (qi ) ≤ 0, then both X

(Mye, F̂ )
i (®q) and X

(Mye, F̃i×F̂−i )
i (®q) are 0

according to the allocation rule of Mye (by (4)). The two allocations

are also the same for all agents when
ˆϕi (q) = ϕ̃i (q) > 0. This

implies that no agent gets an altered allocation, thus they obtain

unchanged expected utility. This concludes the proof. □

Thus we can assume without loss of generality that
ˆϕi (·) always

takes a non-negative value, which enables us to relate it with the

bidding strategy in a generalized first-price auction, as discussed

next.

Recall the allocation rule XGFP

i (®b) in Section 2.1 for the general-

ized first-price auction, which maximizes

∑n
i=1 aibi . Let

xGFPi (bi (qi )) = E®q−iX
GFP

i

(
®bi (®qi ), ®b−i (q−i )

)
denote the corresponding interim allocation.

Then we write down the utility of agent i in GFP. Since GFP

is not BIC, we use a quantile-to-bid mapping bi : [0, 1] → R+ to

represent bidder i’s strategy. With value vi (qi ), agent i bids bi (qi ),

obtaining an allocation of Xi
(
bi (qi ), ®b−i (®q−i )

)
units, paying bi (qi )

for each unit. Thus the expected utility of agent i is:

UGFP

i (bi ,b−i ) = Eqi , ®q−i
[
XGFP

i

(
bi (qi ), ®b−i (®q−i )

) (
vi (qi ) − bi (qi )

) ]
= Eqi

[
xGFPi (bi (qi ))

(
vi (qi ) − bi (qi )

) ]
. (6)

A key observation is: the expected utility (5) of agent i in a PDM

with Mye can be written exactly in the same way:

U
Mye

i ( ˆϕi , ˆϕ−i ) = Eqi
[
xGFPi ( ˆϕi (qi ))

(
vi (qi ) − ˆϕi (qi )

)]
. (7)

This is because X
(Mye, F̂ )
i (®q) = XGFP

i ( ˆϕ(®q)) by definition
5
.

We are ready to show our main theorem. We say a strategy si
of PDM is normal if it satisfies the three properties in Lemma 3.1

(identity permutation, monotone and non-negative virtual value).

5
Assume that ties in GFP are broken in the same way as ties are broken in the virtual

welfare maximization of Mye.

Theorem 3.3 (Main Theorem). Myerson’s auction under PDM
is equivalent to the generalized first-price auction. Specifically, there
is a bijection between all normal strategy vectors ®s = (si , s−i ) of PDM
and all non-increasing strategy vectors ®b = (bi ,b−i ) of GFP, such that
®s and ®b produce the same expected utility and expected payment for
each bidder, and the same revenue for the auctioneer.

Proof. We can equate si and ˆϕi because: each normal strategy

si has a non-increasing and non-negative virtual value function

ˆϕi ; and by Lemma 3.2, each non-increasing and non-negative
ˆϕi

determines a unique normal strategy si . Thus by setting
ˆϕi (·) =

bi (·) for each i , the bijection between normal ®s and monotone
®b is

established.

Then by the above observation (6) and (7), we have:

UGFP

i (bi ,b−i ) = U
Mye

i ( ˆϕi , ˆϕ−i ).

Furthermore, for any ®v(®q), we have the same allocation in the two

auctions: X
(Mye, F̂ )
i (®q) = XGFP

i (®b(®q)). By subtracting the value term

from the expected utility, we conclude that the expected payment

and revenue are the same. □

Corollary 3.4. A normal strategy vector ®s is a Nash equilibrium
of Mye under PDM if and only if the corresponding monotone strategy
vector ®b is a Bayes-Nash equilibrium of GFP.

4 EQUIVALENCE IN SPONSORED SEARCH

AUCTIONS

In this section, we focus our attention on the sponsored search

auction. We first introduce some necessary notions.

Let bi be the bid of willingness to pay per quality by agent i .

Let Xi j (®b) denote the probability that item j is allocated to agent i ,

and let Pi (®b) denote the payment for agent i given bidding vector

®b. We use M = (X, ®P) to denote a mechanism M that consists

of an allocation matrix and payment vector (both as functions of

bid vector), where X = (Xi j )n×m and ®P = (P1, P2, . . . , Pn ). The

allocation vector to agent i is ®Xi ·. We assume here the value across

items is additive. Let Xi =
∑
j Xi jγj be the total quality allocated

to bidder i . Let vi (X) = v( ®Xi ·) =
∑
j Xi j · viγj = vi ·

∑
j Xi jγj =

viXi . Basically, vi (X) is the total value of i in the auction outcome

specified by X, ®P .
In a sponsored search auction, we say the auction is feasible,

if each bidder is allocated with at most one ad slot, and each slot

is allocated to at most one bidder. This can be interpreted by the

following constraints:

(unit demand)

∑
j
Xi j (®b) ≤ 1 ∀®b, i

(avoid over allocation)

∑
i
Xi j (®b) ≤ 1 ∀®b, i

(Indivisible ad slots) Xi j (®b) ∈ {0, 1} ∀®b, i, j

We will call them feasibility constraints for the rest of the paper.
It is not hard to verify that the sponsored search auction sce-

nario defined above is a single-parameter setting: Xi (®b) =
∑
j Xi jγj

is the equivalent allocation rule based on quality; the feasibility

constraints form a feasible domain that is downward-closed. Thus
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the optimal auction in sponsored search scenario can be derived

naturally: bidders with the i-th highest positive ironed virtual value

gets the i-th ad slot (one can easily verify its monotonicity), and pay-

ments follow from the Myerson style payment rule in Lemma 2.1.

4.1 Prior-Independent Auctions

Here we introduce some prior-independent sponsored search auc-

tions that are widely used in practice. Sort the bids of agents non-

increasingly, b1 ≥ b2 ≥ · · · ≥ bn . Let γ1 ≥ γ2 ≥ · · · ≥ γm denote

the qualities of ad slots.

Generalized first-price auction. In a generalized first-price auc-

tion, each bidder i ∈ [m] = {1, . . . ,m} gets slot i , pays bi · γi .

Generalized second-price auction. In a generalized second-price

auction, each bidder i ∈ [m] gets slot i , pays bi+1 · γi .

VCG auction. In a VCG auction, each bidder i ∈ [m] gets slot i ,
pays

∑m+1
j=i+1 bj · (γj−1 − γj ). (Here we denote γm+1 = 0.)

4.2 PDM Game in Sponsored Search Auction

Now we focus on PDM game played in sponsored search auction,

and study the revenue equivalence phenomenon concerning various

sponsored search auctions: GSP, VCG, GFP, Mye.

We say a Bayes-Nash equilibrium (BNE) is efficient if for any

value vector ®v with corresponding bid vector
®b = ®b(®v), the resulting

allocationX(®b) is feasible and maximizes the social welfare

∑
i viXi .

When buyers have i.i.d. value distribution, we say a BNE is sym-

metric if buyers use a same bidding function. We first introduce

some useful lemmas.

Lemma 4.1 ([15]). In a generalized first-price auction, when there
are n agents with i.i.d. continuous distribution on values, there is only
one Bayes-Nash equilibrium that is symmetric and efficient.

Lemma 4.2 ([24]). In a generalized second-price auction, when
there are n agents with i.i.d. continuous distribution on values, if
symmetric Bayes-Nash equilibrium exists, then it is efficient.

Lemma 4.3 ([37]). For any two mechanisms that gives efficient
Bayes-Nash equilibrium, if for some value ®v0, the expected payment
for each agent is the same in the two mechanisms, then the two
mechanisms have the same revenue.

We are now ready to show our equivalence results.

First, since the sponsored search auction in this paper is single-

parameter, by Theorem 3.3 we immediately conclude that:

Theorem 4.4. In a PDM game, Mye is revenue-equivalent to GFP
under sponsored search auction scenario.

We then show that when buyers have i.i.d. values, GFP, and VCG

are equivalent while GSP are equivalent to them in some cases.

Theorem 4.5. When buyers have i.i.d. values, Mye, GFP, and VCG
are revenue-equivalent in their respective equilibria under PDM.

Proof. We just need to show the equivalence between GFP and

VCG. By Lemma 2.5, we know that the equilibrium of GFP under

PDM is exactly the same under traditional Bayesian setting. By

Lemma 4.1 we know that GFP only has symmetric and efficient

equilibrium. By Lemma 4.3 we know that GFP is revenue-equivalent

to VCG. This concludes the proof. □

However, GFP and VCG may not be equivalent if buyers have

independent but non-identical distributions.

Example 4.6 (Example 2 in [33]). Suppose there is one item and

two buyers. Buyer 1 has a uniformly random value v1 on [0, 1

1+z ],

buyer 2 has a uniformly random value v2 on U [0, 1

1−z ], for z ≥ 0.

In equilibrium, the bidders’ inverse bidding functions are:

v1 = b
−1
1
(b) =

2b

1 + z(2b)2
, v2 = b

−1
2
(b) =

2b

1 − z(2b)2
.

The CDF GF P (b) of the larger bid is:

GF P (b) = Pr[b1(v1) ≤ b] · Pr[b2(v2) ≤ b] =
(1 − z2)(2b)2

1 − z2(2b)4
,

which is decreasing in z. Thus the revenue of the first-price auction
is increasing in z. However, for the second-price auction, the CDF
GSP (b) of the second value is:

GSP (b) = 1 − Pr[v1 > b] · Pr[v2 > b] = 2b − (1 − z2)b2,

which increases with z. Since the two auctions have the same rev-

enue when z = 0 (i.i.d. case), the revenue of the first-price auction

is strictly better than that of the second-price auction if z > 0.

Theorem 4.7. When the i.i.d. value distribution of buyers and
the qualities of slots satisfy certain conditions such that GSP has a
symmetric BNE, Mye, GFP, VCG, and GSP are revenue-equivalent in
their respective symmetric equilibria under PDM.

Proof. We just need to show the equivalence between GSP and

VCG. By Lemma 2.5, we know that the equilibrium of GSP under

PDM is the same as the traditional Bayes-Nash equilibrium. By

Lemma 4.2, the symmetric equilibrium of GSP must be efficient. By

Lemma 4.3 we know that GSP is revenue-equivalent to VCG. □

Finally, we demonstrate by the following two examples that GSP

may not have symmetric BNE, and may admit asymmetric BNE,

even if buyers have i.i.d. values. Our equivalence results concerning

GSP do not hold in these two situations.

Example 4.8 (Example 1 in [24]). Consider three buyers with

i.i.d. values from Uniform[0, 1] and two slots with qualities (1,γ2).
A symmetric equilibrium exists if and only if γ2 ≤ 0.75.

Example 4.9 (Section 3.1 in [32]). Consider three buyers with

i.i.d. values fromUniform[1, 2] and three slots with qualities (1, 1
2
, 1
2
).

There is an asymmetric equilibrium: b1(v1) = v1, b2(v2) = b3(v3) =
0. Clearly buyer 1 is in equilibrium. To see that buyer i = 2, 3 are

in equilibrium, suppose i has valuation vi > 0. If i bids b ≤ 1, then

her utility is
1

2
vi − 0, and if she bids b > 1, her utility would be:

vi Pr[v1 ≤ b] +
1

2

vi Pr[v1 > b] −

∫ b

1

v1dv1

=
1

2

bvi −
b2 − 1

2

≤
1

2

vi .
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