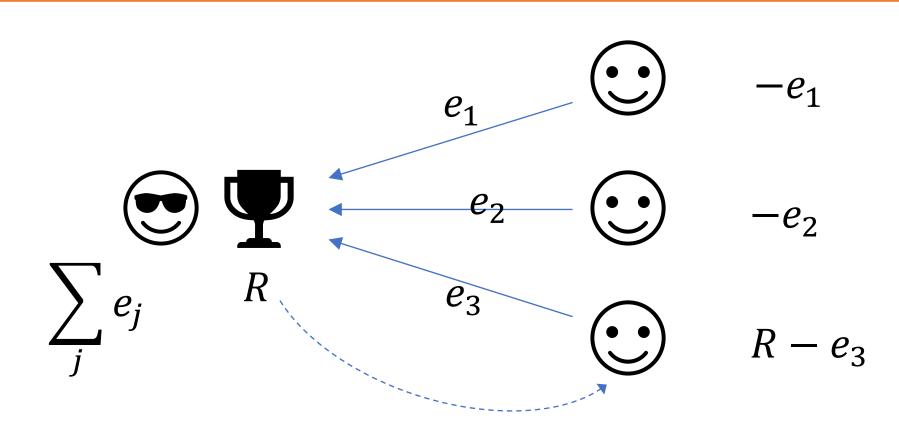
From Monopoly to Competition: Optimal Contests Prevail

Xiaotie Deng Peking University Yotam Gafni

Technion

Motivating question:


How should conference organizers design best paper award contests, when there are multiple conferences competing for paper submissions?

A Contest

• Abstraction of a contest in real life: sports competition, best paper award, etc.

In a contest, there are:

- 1 contest designer, >=1 contestants.
- The designer has a prize/reward.
- Contestants exert *efforts* to compete for the reward.
- The designer wants to maximize the sum of efforts from the contestants.
- Each contestant wants to maximize the (expected) reward he/she gets the effort.

Examples of a contest:

- All Pay Auction (APA): the contestant with $\max_{j} e_{j}$ wins the prize. (breaks ties randomly)
- Tullock Contest: parameterized by $\tau \ge 0$; each contestant wins the prize with probability

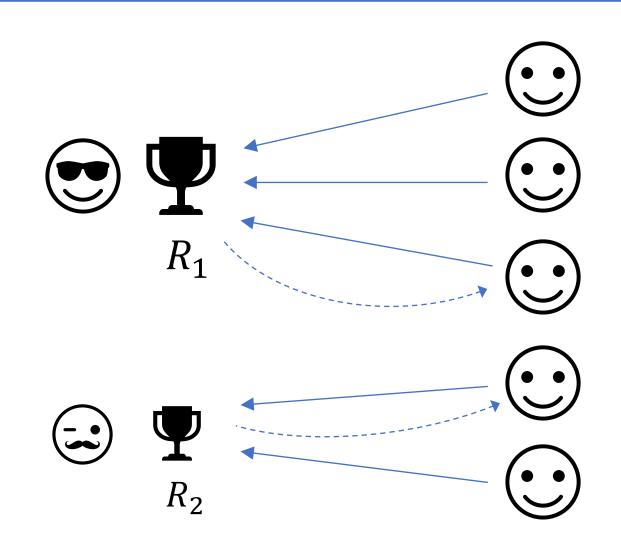
$$\frac{e_j^{\tau}}{\sum_k e_k^{\tau}}$$

Lemma [1]: APA induces more efforts than any Tullock contest does, regardless of the number of contestants.

Ron Lavi University of Bath Tao Lin Harvard University

Main Model: Compitition among Contests

Motivation:


• Oftentimes in practice, there are *multiple* contests available to the contestants at the same time.

Model:

- $m \ge 2$ contest designers, $n \ge 1$ contestants.
- Each contest designer *i* chooses a contest $C_i \in S_i$ from a set of contests S_i with reward $R_i > 0$.
- Each contestant chooses a contest to participate in.
- The contestants participating in the same contest play the single contest game (described on the left).

Notes:

- Contest designers can be asymmetric: different S_i and R_i
- Contestants are *symmetric*. In particular, they play a symmetric mixed-strategy equilibrium in the game of choosing contests to participate in.

Two competing factors: effort vs. participation

• A contest that requires less efforts from the contestants (e.g., a Tullock contest with small τ) encourages more participation.

Hongyi Ling ETH Zurich

Main Result: Optimal Contests Prevail

Theorem 1: It is an equilibrium for the contest designers to choose the contest $C_i^* \in S_i$ that is the optimal contest in the single contest game.

(optimal: maximizing the sum of efforts)

For example, if $S_i = \{APA, Tullock\}$, then every designer will choose APA.

Answer to the motivationg question: There is no need for the organizers to consider the competition from other conferences!

In other words, effort dominates participation!

Other Results

Theorem 2 (uniqueness): The equilibrium in Theorem 1 is *dominant* and *unique*, under the following natural assumption:

 every contest C_i ∈ S_i has "monotonically decreasing utility": in the single contest game, when the number of contestants increases, the expected utility of each contestant decreases.

Theorem 3 (Pareto-optimality): The equilibrium in Theorem 1 is *Pareto-optimal* for the designers.

Observation 4 (asymmetric contestants): The conclusion of Theorem 1 breaks if the contestants are *asymmetric,* in the sense that:

- They play an asymmetric participation equilibrium.
- Or they have different unit costs of effort c_j (exerting effort e_i costs the contestant c_ie_i).

Reference