
Non-Bayesian Information Design:

Learning and LLM-Based Approaches

Tao Lin

Microsoft Research (2025) → CUHK-Shenzhen (2026)

2026/1/9, Huawei



An economic model about information asymmetry: one player (“sender”) strategically 

reveals information to influence the decision of another player (“receiver”). 

Examples:

• Advertising

• Seller reveals product information to buyers

• School designs letter grading scheme

• Professor writing recommendation letter

• ...
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Information Design
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Information Design is a form of “Persuasion”
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• Many classical models for information design:

• “Information Disclosure Games” (Grossman, 1981; Milgrom 1981)

• “Cheap Talk” (Crawford & Sobel, 1982)

• “Bayesian Persuasion” (Kamenica & Gentzkow, 2011)

• …

• Common modeling approach:

• Abstract signal space: The information transmitted from sender to receiver is 

modeled by a random variable 𝑠 correlated with the state of the world 𝜔

• Bayesian receiver: The receiver does Bayes update after receiving 𝑠

• Importantly, how the signal 𝑠 is communicated (e.g., wording) doesn’t matter.

• Our work: non-Bayesian information design, via “learning + LLM” approaches. 

Correlation Matters;  Wording Doesn’t

Classical Information Design Models
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• Background on a Classical Information Design Model:  

“Bayesian Persuasion” [Kamenica & Gentzkow, 2011] 

• Information Design with a Learning Receiver

• Information Design with Large Language Models

Outline



0.8

suitable

not suitable

State of the 
world 𝜔

Q: What’s the professor’s optimal 
recommendation strategy? 

Signal 𝑠

Utility: 

𝑣 hire, 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 = 1

𝑣 hire, 𝑛𝑜𝑡 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 = −1

𝑣 not hire, 𝜔 = 0

Hire if Pr 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 𝑠 ≥ 0.5
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𝑝 = 0.2

Prior 𝜇
Sender Receiver 

Example of Bayesian Persuasion: Recommendation Letter

“suitable”

“not suitable”

Utility:

𝑢 hire, 𝜔 = 1

𝑢 not hire, 𝜔 = 0

Bayesian reasoning: 
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𝑝 = 0.2

Sender Receiver 

“suitable”

“not suitable”

Utility:

𝑢 hire, 𝜔 = 1

𝑢 not hire, 𝜔 = 0

• Always say “suitable”:

recruiter does not hire; 

professor gets 0

Prior 𝜇

Utility: 

𝑣 hire, 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 = 1

𝑣 hire, 𝑛𝑜𝑡 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 = −1

𝑣 not hire, 𝜔 = 0

Hire if Pr 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 𝑠 ≥ 0.5

Bayesian reasoning: 

Example of Bayesian Persuasion: Recommendation Letter
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𝑝 = 0.2

Sender Receiver 

“suitable”

“not suitable”

Utility:

𝑢 hire, 𝜔 = 1

𝑢 not hire, 𝜔 = 0

• Always say “suitable”:

recruiter does not hire; 

professor gets 0

• Hoest 

Recommendation:

professor gets 0.2

0.8

0.2

Prior 𝜇

Utility: 

𝑣 hire, 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 = 1

𝑣 hire, 𝑛𝑜𝑡 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 = −1

𝑣 not hire, 𝜔 = 0

Hire if Pr 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 𝑠 ≥ 0.5

Bayesian reasoning: 

Example of Bayesian Persuasion: Recommendation Letter
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𝑝 = 0.2

Sender Receiver 

“suitable”

“not suitable”

Utility:

𝑢 hire, 𝜔 = 1

𝑢 not hire, 𝜔 = 0
• The optimal strategy
   (partial info revelation):
• if suitable, say “suitable”;
• if not, say “suitable” w.p. 25% 
Professor gets 0.4

0.2
0.2

0.6

Prior 𝜇

Utility: 

𝑣 hire, 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 = 1

𝑣 hire, 𝑛𝑜𝑡 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 = −1

𝑣 not hire, 𝜔 = 0

Hire if Pr 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 𝑠 ≥ 0.5

Bayesian reasoning: 

Example of Bayesian Persuasion: Recommendation Letter
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Key Assumptions in Classical BP Theory

• Commitment:

• Sender can commit to a randomized mapping (“signaling scheme”) 

𝜋: Ω → Δ 𝑆  before state realization. 

Learning 

LLM 

• Bayesian receiver: 

• The receiver knows the prior 𝜇 and the sender’s signaling scheme 𝜋, 

and does Bayes update after receiving signal 𝑠 (and best responds) 

• Abstract signal space:

• Language doesn’t matter – only the correlation between signal and 

state matters. 
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• Background on a Classical Information Design Model:  

“Bayesian Persuasion” [Kamenica & Gentzkow, 2011] 

• Information Design with a Learning Receiver

• Information Design with Large Language Models

Outline



Generalized Principal-Agent Problem with a 
Learning Agent

   Tao Lin        Yiling Chen

Harvard University

ICLR (International Conference on Learning Representations), 2025

Quantitative Economics, 2026
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Learning in games has a long history

• Adaptive Dynamics & Fictitious Play: Brown (1951), Robinson (1951), Shapley (1953) 

• The Theory of Learning in Games: Fudenberg & Levine (1991) 

• No-regret learning and correlated equilibrium:

• Hart & Mas-Colell (2000); Blum & Mansour (2007)

• Prediction, Learning, and Games: Cesa-Bianchi & Lugosi (2006)

• …… 

Our work:

• Replaces the Bayesian receiver with a learning receiver in information 

design problems 

• Studies whether the learning outcome matches the classical outcome. 



Day 1

Choose an action: 
(can randomize)

Unknown rewards: 

Receiver: 

feedback

10 0 -5 2

(Contextual) No-Regret Property

For any sequence of unknown rewards, after 𝑇 rounds, 

   𝔼[Total reward obtained]  ≥  Total reward of the best signal-to-action mapping − 𝑂 𝑇

No-regret learning algorithms exist; most are based on “smoothed best response to history”. 

Day 𝑇

-1 3

……

feedback feedback
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Receiver’s Learning Problem:

Signal  𝑠1 𝑠2

Day 2
𝑠𝑇

Contextual Multi-Armed Bandit



Information Design with a Learning Receiver

𝑠1

𝑎1
……

𝜔1 ∼ 𝜇 𝑣1𝑢1

……

𝑠𝑡

𝑎𝑡

𝜔𝑡 ∼ 𝜇 𝑣𝑡𝑢𝑡

𝑠𝑇

𝑎𝑇

𝜔𝑇 ∼ 𝜇 𝑣𝑇𝑢𝑇

• Two players:    sender    and    receiver 

• Sender knows the state distribution 𝜇 ∈ Δ Ω ,  which the receiver doesn’t need to know

• At each round 𝑡: 

No commitment:   “Bayesian Persuasion” = “Cheap Talk”  (Crawford & Sobel, 1982)

• The receiver uses a Contextual MAB algorithm to decide, for each possible signal, 

what action to choose:   𝜌𝑡: 𝑆 → Δ 𝐴                       (based on history)

• State 𝜔𝑡 ∼ 𝜇 is realized

• Sender sends signal s𝑡 ∼ 𝜋𝑡 ⋅ 𝜔𝑡)

• Receiver takes action 𝑎𝑡 ∼ 𝜌𝑡 ⋅ 𝑠𝑡)

• The two players obtain utilities 𝑢 𝑎𝑡 , 𝜔𝑡 , 𝑣 𝑎𝑡 , 𝜔𝑡  



Our Questions:

With a learning receiver,

• Can the sender still achieve the classical outcome (with commitment and 

Bayesian receiver)?

𝑈sender learning receiver ≥ 𝑈sender
∗ Bayesian receiver  

• Can the sender do better than the classical outcome? 

𝑈sender learning receiver > 𝑈sender
∗ Bayesian receiver

16

Information Design with a Learning Receiver

𝑠1

𝑎1
……

𝜔1 ∼ 𝜇 𝑣1𝑢1

……

𝑠𝑡

𝑎𝑡

𝜔𝑡 ∼ 𝜇 𝑣𝑡𝑢𝑡

𝑠𝑇

𝑎𝑇

𝜔𝑇 ∼ 𝜇 𝑣𝑇𝑢𝑇



Result 1:

With a learning receiver,

• The sender can achieve the classical outcome:

• 𝑈sender learning receiver ≥ 𝑈sender
∗ Bayesian receiver − 𝑂 Reg 𝑇  

• How?  Just use the optimal signaling scheme 𝜋∗ in the classical setting. The 

receiver will learn to best respond as 𝑇 → ∞

• Why 𝑂 Reg 𝑇  ?  The receiver may take Reg 𝑇 -sub-optimal action in 

Reg 𝑇  fraction of time, causing a total loss of Reg 𝑇  to the sender. 
17

Main Contributions

𝑠1

𝑎1
……

𝜔1 ∼ 𝜇 𝑣1𝑢1

……

𝑠𝑡

𝑎𝑡

𝜔𝑡 ∼ 𝜇 𝑣𝑡𝑢𝑡

𝑠𝑇

𝑎𝑇

𝜔𝑇 ∼ 𝜇 𝑣𝑇𝑢𝑇



Result 2:

With a learning receiver,

• The sender can achieve the classical outcome.  

• Can the sender do better than the classical outcome? 

• Yes, for all “smoothly-best-responding” no-regret learning receivers:  ∃ 

instance, 

 𝑈sender learning receiver > 𝑈sender
∗ Bayesian receiver + Const

• No, for all “no-swap-regret” learning receivers.  
18

Main Contributions

𝑠1

𝑎1
……

𝜔1 ∼ 𝜇 𝑣1𝑢1

……

𝑠𝑡

𝑎𝑡

𝜔𝑡 ∼ 𝜇 𝑣𝑡𝑢𝑡

𝑠𝑇

𝑎𝑇

𝜔𝑇 ∼ 𝜇 𝑣𝑇𝑢𝑇



not s.
not s. (0.8) 

suitable
suitable (0.2)

not hire

hireFirst,
honest recommendation: 

Then, always
say “suitable”: 

…
…

After some time, the 
receiver will realize that 
the signal is not truthful: 

…
…

gets 0.2

gets 1

gets 0 

Average utility > 0.4 ? 

not s. (0.8) 

suitable
suitable (0.2) hire

not s. (0.8) 

suitable
suitable (0.2) not hire

Intuition for why doing better is possible: Dynamic Strategy
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No-Swap-Regret

For any sequence of reward functions, after 𝑇 rounds,

    𝔼  σ𝑡=1
𝑇 𝑣𝑡 𝑎𝑡  ≥  max

𝜙:𝐴→𝐴 
𝔼  σ𝑡=1

𝑇 𝑣𝑡 𝜙 𝑎𝑡  −  𝑂 𝑇 .

No-swap-regret MAB algorithms exist: [Hart & Mas-Colell, 2000] [Blum & Mansour, 2007]

Why can't the sender exploit a no-swap-regret learning receiver? 

• Consider the signal-action pair 𝑠𝑡 , 𝑎𝑡  as a joint signal from some signaling scheme ෤𝜋.

• No-swap-regret guarantees approximate best response to ෤𝜋. 

No-Regret

For any sequence of reward functions, after 𝑇 rounds, 

𝔼  σ𝑡=1
𝑇 𝑣𝑡 𝑎𝑡  ≥  max

𝑎∈𝐴 
𝔼  σ𝑡=1

𝑇 𝑣𝑡 𝑎  −  𝑂 𝑇 .

Many no-regret MAB algorithms do “smoothed best response to history”. 

20

No-Swap-Regret Learning Algorithms



?
Games with

complete information

[1] Bimatrix 
Stackelberg Games
[2] Contract Design

……

Games where
the agent has 

private information

[3] Auctions
……

[1] Deng, Schneider, Sivan (2019). Strategizing against No-regret Learners.
[2] Guruganesh, Kolumbus, Schneider, Talgam-Cohen, Vlatakis-Gkaragkounis, Wang, Weinberg (2024). Contracting with a Learning Agent.
[3] Braverman, Mao, Schneider, Weinberg (2018). Selling to a No-Regret Buyer. 

No-Swap-Regret is Exploitable No-Swap-Regret is Not Exploitable 

• “Smoothly-best-responding” no-regret learning agents are exploitable in many games [1] [2]

• If the agent does no-swap-regret learning, then the principal

• cannot exploit the agent in the games in [1] [2]: 𝑈 learning  < 𝑈∗ rational + 𝑜 1

• can exploit the agent in some other games [3]:  𝑈 learning  > 𝑈∗ rational + 𝑐𝑜𝑛𝑠𝑡

21

Our & Previous Work on Learning in Principal-Agent Games
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Our & Previous Work on Learning in Principal-Agent Games

[Our work]

Games where the principal 
has private information,
while the agent does not: 

e.g., Information Design
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• Background on a Classical Information Design Model:  

“Bayesian Persuasion” [Kamenica & Gentzkow, 2011] 

• Information Design with a Learning Receiver

• Information Design with Large Language Models

Outline



Information Design with Large Language Models

Working paper (arXiv 2025)
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Key Assumptions in Classical BP Theory

• Commitment:

• Sender can commit to a randomized mapping (“signaling scheme”) 

𝜋: Ω → Δ 𝑆  before state realization. 

• Bayesian receiver: 

• Knowing the prior 𝜇 and signaling scheme 𝜋, the receiver does Bayes 

update after receiving signal 𝑠 (and then best responds) 

• Abstract signal space:

• Language doesn’t matter – only the correlation between signal and 

state matters. 

Learning 

We aim to capture the linguistic aspect of persuasion 
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Example 1: Framing Effect (Tversky & Kahneman, 1981)
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Example 2:  Slogan/Logo of a Brand
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1) We propose a theoretical model for “Information Design 

with Framing Effect”. 

2) We use Large Language Models to

• simulate real-world framing effect, and

• optimize framing. 

Our Contributions
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A Theoretical Model for “Persuasion with Framing Effect”

• Two players:    sender                receiver

• Sender chooses a framing 𝑐 from a set of framings 𝐶

• Sender has prior belief 𝜇0 ∈ Δ Ω  for the state

• The framing 𝑐 shapes the receiver’s prior belief to be 𝜇𝑐 = ℓ 𝑐

• ℓ: 𝐶 → Δ Ω  is a “belief oracle”

• With the receiver’s prior belief being 𝜇𝑐, Bayesian Persuasion game happens:

• Sender designs a signaling scheme 𝜋: Ω → Δ 𝑆 , and sends signal 𝑠 ∼ 𝜋 ⋅ 𝜔

• After receiving 𝑠, the receiver obtains posterior belief 𝜇𝑐 ⋅ 𝑠, 𝜋) by Bayes-updating 

from 𝜇𝑐, and chooses an optimal action 𝑎𝑠,𝜋
∗ 𝜇𝑐 ∈ argmax𝑎∈𝐴 σ𝜔∈Ω 𝜇𝑐 𝜔 𝑠, 𝜋 𝑣 𝑎, 𝜔

• Sender obtains utility 𝑢 𝑎𝑠,𝜋
∗ 𝜇𝑐 , 𝜔

2929

Framing 𝑐 can be though of a “context”:
• does not depend on the state 𝜔, but still affects the receiver’s prior belief

(non-Bayesian effect)
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We study two sub-problems

3030

Problem 1: Framing-Only Optimization: 

   Fix 𝜋, find  max
𝑐∈𝐶

 𝔼𝜔∼𝜇0, 𝑠∼𝜋 ⋅ 𝜔)  𝑢 𝑎𝑠,𝜋
∗ 𝜇𝑐 , 𝜔  

Problem 2: Joint Optimization: 

max
𝑐∈𝐶, 𝜋:Ω→Δ 𝑆

 𝔼𝜔∼𝜇0, 𝑠∼𝜋 ⋅ 𝜔)  𝑢 𝑎𝑠,𝜋
∗ 𝜇𝑐 , 𝜔  
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Main Theoretical Finding:
Joint Optimization is easier than Framing-Only Optimization

31

Theorem 2: 

There exists a poly Ω
log 𝐴

𝜀2  time algorithm 

to compute an 𝜀-optimal 𝑐∗, 𝜋∗  pair

(under some oracle assumptions)

Theorem 1:

Computing the optimal framing 𝑐∗ is NP-hard

Problem 1: Framing-Only Optimization: 

   Fix 𝜋, find  max
𝑐∈𝐶

 𝔼𝜔∼𝜇0, 𝑠∼𝜋 ⋅ 𝜔)  𝑢 𝑎𝑠,𝜋
∗ 𝜇𝑐 , 𝜔  

Problem 2: Joint Optimization: 

max
𝑐∈𝐶, 𝜋:Ω→Δ 𝑆

 𝔼𝜔∼𝜇0, 𝑠∼𝜋 ⋅ 𝜔)  𝑢 𝑎𝑠,𝜋
∗ 𝜇𝑐 , 𝜔  



32

Main Theoretical Finding:
Joint Optimization is easier than Framing-Only Optimization

Intuitions:

• Optimizing framing 𝑐 is equivalent to optimizing prior belief 𝜇𝑐 ∈ 𝐵 = ℓ 𝑐 : 𝑐 ∈ 𝐶

• Write the sender’s objective as a function of 𝜇𝑐  and 𝜋:

 𝑈 𝜇𝑐 , 𝜋 = 𝔼𝜔∼𝜇0, 𝑠∼𝜋 ⋅ 𝜔)  𝑢 𝑎𝑠,𝜋
∗ 𝜇𝑐 , 𝜔  

• Observation 1:  Fixing 𝜋, 𝑈 𝜇𝑐 , 𝜋  is a discontinuous function of 𝜇𝑐

• Small change in 𝑐 (small change in 𝜇𝑐)  →  Small change in posterior belief  →  Sudden 

change in receiver’s action  →  Large change in sender’s utility

• Observation 2: 𝑈∗ 𝜇𝑐 = max
𝜋:Ω→Δ 𝑆

 𝑈 𝜇𝑐 , 𝜋   is a continuous function of 𝜇𝑐

32
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2) We use Large Language Models to

• simulate real-world framing effect, and

• optimize framing. 

Our Contributions



Ƹ𝜇𝑐𝑐

e.g., receiver information

𝑐

𝑈 ො𝜇𝑐 , ො𝜋𝑐
∗

34

We use LLM to do two things:

• Simulate the framing-to-belief oracle ℓ: 𝑐 ↦ 𝜇𝑐

• Optimize framing 𝑐

Framing-Signaling Joint Optimization using LLM

(Iterative Prompt 

Optimization)



“Meet Jeremy Hammond, a dedicated realtor 
with over 8 years of experience, specializing in 

finding the perfect homes for outdoor enthusiasts 
like you.... Trust Jeremy to help you discover a 
home that complements your active lifestyle 

while staying within your budget.”

35

Sender: a realtor
               (house-selling agent)

Receiver: a potential house-buyer

State: quality of a house

Framing 𝑐: description of the realtor:

Henry lives in Boston and is an avid 
outdoor person who enjoys hiking 
and being in nature. For him, a 
“good” house has low 
maintenance, affords easy access 
to trails, biking, running etc, and 
far from the main city. He is single 
and doesn’t like a family-oriented 
house. He is looking for houses less 
than $500,000.

Signal (recommendation) 𝑠: “buy” or “not buy”

Case Study: House Buying

State-independent! 
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Why?
• Previous works showed that prompted LLM can simulate specific group of people.
• When people delegate decisions to AI agents, we will persuade AI agents. 
How? 
• Provide the realtor description 𝑐 to LLM (without recommendation 𝑠)
• Ask LLM to output the buyer’s prior belief about the state of the house.

Chat-GPT
4o

Human
responses
(from
Prolific)

Experiment 1: Use LLM to simulate the belief oracle ℓ: 𝑐 ↦ 𝜇𝑐
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Experiment 2.1: Use LLM to optimize framing 𝑐

LLM generates sentences not in the given realtor profile, tailored to Henry



38

Experiment 2.2: Use LLM to optimize framing 𝑐

LLM generates a different realtor description for another house-buyer
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• Background on a Classical Information Design Model:  

“Bayesian Persuasion” [Kamenica & Gentzkow, 2011] 

• Information Design with a Learning Receiver

• Information Design with Large Language Models

• Summary and one more thing

Outline



Summary:  Information Design + Learning & LLM

Many research opportunities!  

• Commitment:

• Sender can commit to a randomized mapping (“signaling scheme”) 

𝜋: Ω → Δ 𝑆  before state realization. 

• Bayesian receiver: 

• Knowing the prior 𝜇 and signaling scheme 𝜋, the receiver does Bayes 

update after receiving signal 𝑠 (and best responds)

• Abstract signal space:

• Language doesn’t matter – only the correlation between signal and 

state matters.

Learning outcomes might differ from classic outcomes 

Capture framing effect by theory and LLM



My Research Interests

Economics

Machine 
Learning

Theoretical 
CS
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“Learning-Based Incentive Design”: 

• Information Design

• Mechanism Design

• Algorithmic Game Theory

• Multi-Agent Learning

• ……
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