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Abstract

We consider the problem of maximizing a submodular function with access to a
noisy value oracle for the function instead of an exact value oracle. Similar to
prior work [[13}[16], we assume that the noisy oracle is persistent in that multiple
calls to the oracle for a specific set always return the same value. In this model,
Hassidim and Singer [13]] design a (1 — 1/e)-approximation algorithm for mono-
tone submodular maximization subject to a cardinality constraint and Huang et al.
[16] design a (1 — 1/e)/2-approximation algorithm for monotone submodular
maximization subject to any arbitrary matroid constraint. In this paper, we design a
meta-algorithm that allows us to take any “robust” algorithm for exact submodular
maximization as a black box and transform it into an algorithm for the noisy setting
while retaining the approximation guarantee. By using the meta-algorithm with
the measured continuous greedy algorithm, we obtain a (1 — 1/e)-approximation
(resp. 1/e-approximation) for monotone (resp. non-monotone) submodular maxi-
mization subject to a matroid constraint under noise. Furthermore, by using the
meta-algorithm with the double greedy algorithm, we obtain a 1/2-approximation
for unconstrained (non-monotone) submodular maximization under noise.

1 Introduction

Submodular maximization is a fundamental problem that frequently appears in various forms in many
fields such as machine learning, combinatorial optimization, and economics. Submodular functions
are functions that satisfy the diminishing returns property. More formally, a function f: 2V — R
on a ground set NV is said to be submodular if for any sets S C 7" C N and element i € N \ T, we
have f(SU{i}) — f(S) > f(T'U{i}) — f(T). Despite the intuitive nature of submodular functions,
many basic problems are NP-hard such as maximizing a monotone submodular function subject to a
cardinality constraint or maximizing a non-monotone submodular function without any constraints.
Given the inherent intractability of this problem, there has been a vast body of research that aims to
develop computationally efficient approximation algorithms for maximizing submodular functions in
various settings.

The standard model in submodular maximization assumes that we have value oracle access to the
submodular function f where, given a set S, we can retrieve the exact value of f(S). However, in
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many settings it is not realistic to assume the existence of an exact value oracle. For example, in
machine learning, we can never evaluate the true loss function of a model as we do not have access to
the true distribution of the population. At best, we may have access to a noisy version of the loss
function. In this paper, we study a model for noisy submodular maximization introduced by Hassidim
and Singer [13]] where querying a set S returns only an unbiased estimate of f(.5). A notable feature
of this model is persistent noise, where querying the value of a set twice returns the same value. Thus,
simply querying a submodular function multiple times at the same input cannot be used to denoise
the function. Nonetheless, one can still ask whether existing algorithms work in this setting. However,
Hassidim and Singer [[13]] show that this is probably unlikely. For example, they show that the natural
greedy algorithm is too sensitive to noise and only obtains an o(1)-approximation despite being the
optimal algorithm when there is no noise. Thus, new algorithms are needed to deal with noise.

For the problem of maximizing a noisy monotone submodular function subject to a cardinality con-
straint, Hassidim and Singer [[13]] designed an algorithm that achieves a tight (1 — 1 /e)-approximation.
At a high-level, their algorithm computes a smooth surrogate function which essentially averages a
few queries together to obtain an estimate that may have less noise but potentially be biased. They
then apply the greedy algorithm on this surrogate function to obtain a (1 — 1/e)-approximation. In
a follow-up work, Huang et al. [16] proved a (1 — 1/¢e)/2-approximation ratio for noisy monotone
submodular maximization under an arbitrary matroid. This approximation ratio can be improved to
1 — 1/e if the matroid satisfies a “strongly base-orderable” property. While Huang et al. [16] also
make use of the smoothing technique, their algorithm is based on a local search algorithm [10].

Main question. While prior work has established that submodular maximization is feasible in the
noisy setting, a notable downside is that the algorithms and analyses are designed for their specific
problems. For example, Hassidim and Singer [13] only obtain results for monotone submodular
maximization subject to a cardinality constraint and, while Huang et al. [16] extend to arbitrary
matroids, their analyses have a factor of 2 gap with the optimal result, despite an algorithm which is
provably optimal in the non-noisy setting. Our main question is whether such specific analyses are
necessary. In particular, we want to answer the following question:

Can we design a framework for noisy submodular maximization that allows us
to reuse existing algorithms for the noiseless submodular maximization problems
while retaining existing guarantees?

Our contributions. Our main contribution in this paper is an affirmative answer to the above
question. In particular, we show that any algorithm for exact submodular optimization which is
sufficiently “robust” can be translated to an algorithm for noisy submodular optimization with only
an o(1) loss in the approximation ratio. For many settings, this obviates the need for designing new
algorithms and instead relies only on checking whether existing algorithms are sufficiently robust.
Our technique builds on but differs from [[13]: we propose the use of a random surrogate function,
which circumvents the limitation of a deterministic surrogate function in [13]].

For our first application, we instantiate our framework with the continuous greedy algorithm [4}, [9].
Specifically, we use the measured continuous greedy algorithm of Feldman et al. [9] which gives
a (1 — 1/e)-approximation for monotone submodular maximization and a 1/e-approximation for
non-monotone submodular maximization, both subject to matroid constraints. As our framework
inherits the approximation guarantees of these algorithms, we achieve the same approximation ratios
for the noisy setting, with only o(1) loss in the approximation ratio. Our second application is to
instantiate our framework with the double greedy algorithm [3] to obtain a 1/2-approximation for
noisy unconstrained submodular maximization, which is tight even without noise. To our knowledge,
we provide the first set of results for noisy submodular maximization for non-monotone functions, in
both unconstrained and matroid constrained settings. We summarize our results in Table[T]

Other related works. Another work that is closely related to ours is Hassidim and Singer [14]],
which also studies the setting where the noise is persistent. In particular, they considered intersection
of P matroids and show a 1/(1 + P)-approximation. There have also been works that look at the
noisy submodular setting but without persistent noise: for example, Singla et al. [20] consider a
model where one only has preference information, and Chen et al. [5] assume that one has access to
noisy marginal estimates instead of a value oracle.



Table 1: Our work compared with previous works on noisy submodular maximization. (tight) means
optimal approximation ratios achievable by polynomial-time algorithms even without noise.

Submodular function Constraint Previous work  Our work
Cardinality 1—1/e (tighty 1-—1/e (tight)
Monotone (3] Theorem 2]
Matroid (1-1/e)/2 1—1/e (tight)
[16] Theorem
Non-monotone Unconstrained None 1/2 (tight)
Theorem
Matroid None

1/e
Theorem

Another related line of work is optimizing approximately submodular functions, where the noise is
not unbiased and can be adversarial. Horel and Singer [13]] show that even there is only 1/y/n noise,
the problem becomes intractable and prove exponential lower bounds on the query complexity. On
the other hand, they show that constant approximation algorithms are achievable when the “curvature”
is bounded or when the noise is small in terms of the rank of the matroid. Zheng et al. [25] study
maximizing approximately k-submodular functions. Chierichetti et al. [6] study functions that satisfy
submodularity e-approximately and convert them to exactly submodular functions that are en?-close
to the original functions, establishing a reduction to the exact submodular setting. A difference with
our work is that our noisy value function is far from being e-approximately submodular. A key
contribution of our work is to convert our noisy value function to a surrogate function that is close to
the underlying submodular function, which then enables a reduction similar to [6].

A less related line of work is on online submodular maximization [[12,[17, 18} 121} 22]]. Here, one is
given a sequence of submodular functions f1, fo, ... and before seeing f;, a player must decide on a
set to play. The goal is to minimize “«-regret” which is the difference between the value obtained by
the player and an a-approximation of the optimum. Although the problem setting is different, these
works also tend to show that many known algorithms are “robust” and develop a way to reuse these
algorithms in the online setting. Such an approach is similar to ours as we show that a number of
algorithms are robust and reuse them for the noisy setting.

2 Preliminaries

Submodular set function. Let N be a ground set of size | V| = n. For a set S and an element z,
we denote S +x = SU{z}and S —x = S\ {z}. Let f : 2V — R>( be a non-negative function
defined on subsets of N. Assume f(0) = 0F] We use fs(z) = f(S + z) — f(S) to denote the
marginal value of element x € N with respect to set .S C NN. The function f is said to be:

* submodular if for any subsets A C B C N and any element x € N \ B, fa(z) > fp(x).
* monotone if for any subsets A C B C N, f(A) < f(B).

This work considers both monotone and non-monotone (general) submodular functions.

Noisy value oracle. A noisy value oracle for f is denoted by fioN o R>(. Following previous

works [[13}[16], we consider a multiplicative noisy value oracle defined by f(S) = £sf(.S) for all
sets S C N, where £g is a non-negative random variable distributed according to some distribution
D. We call g the noise multiplier for set S. Following [[13}[16], we assume that the noisy value
oracle satisfies the following three properties:

* Unbiased: E[f(S)] = f(5), namely, E[{s] = 1.

2For our applications, this is without loss of generality since one can add a “dummy” element x and then
define g(@) = 0, g(zo) = f(0), and g(S) = g(S+=z0) = f(S) for S # 0. The function g remains submodular,
and an a-approximation for maximizing g gives an a-approximation for maximizing f. For feasibility, any set
that was feasible for the original problem remains feasible after adding x¢. This remains a matroid constraint.



* Persistent: querying a set .S multiple times returns the same value f ().

* Independent across different sets: for different sets S1, ..., Sk, f(S1), ..., f(Sk) are independent.
Namely, £g,, . - -, &g, are independent.

If one does not assume persistence, and querying f (S) multiple times gives independent estimates of
f(S), then the problem becomes trivial since one can easily estimate f(S) by repeated sampling.

In this work, we assume that the noise multiplier {g ~ D is sub-exponential.

Definition 2.1 (see, e.g., Wainwright [24]]). A distribution D (or a random variable & ~ D) is
L2322

sub-exponential with parameters (v, o) if E[e*¢~EED] < ¢*3 holds for any X satisfying |A| < L.

Sub-exponential distributions are a large class of distributions, including bounded, Gaussian, and
exponential distributions. For example, a random variable & bounded in [0, B] is sub-exponential
with parameters (v = B, a = 0). Moreover, sub-exponential distributions include the generalized
exponential tail distributions that have been considered by previous work on monotone submodular
maximization under noise [13| [16]. We assume that the parameters (v, «) of the sub-exponential
distribution D are known while the distribution D itself is unknown.

Matroid constraints. We aim to maximize the function f using noisy value oracle f over subsets
S C N that satisfy some constraints. Let Z C 2N be a collection of feasible subsets of N. We assume
7 to be downward-closed: i.e.,for I € Zand I’ C I, I' € T. We define two types of constraints:

* Unconstrained: T = 2N .

* Matroid constraint: I is called a matroid if, in addition to being downward-closed, the following
condition holds: for any I, Iy € Z satisfying |I1| < |I2|, there exists an element e € I5 \ I such
that I; U {e} € Z. Each I € T is called an independent set. A maximal independent set is called
a basis of the matroid. It can be shown that all maximal independent sets are of the same size,
which is called the rank of the matroid. We denote the rank by r = r(Z).

An important special case of a matroid constraint is a cardinality constraint, where I € Z if and only
if |[I| <r.

Given a feasibility set Z, we use O* to denote an optimal set. In other words, O* € arg maxg7 f(5).
We will use f(O*) to denote the optimal value. Recall that solving the above optimization problem is
generally NP-hard but efficient approximation algorithms are known for many settings.

3 A Unified Approach to Noisy Submodular Maximization

In this section, we present a unified approach to the noisy submodular maximization problem. This
approach is a reduction to the submodular maximization problem with the exact value oracle.

Theorem 3.1 (Informal). Let A be a “robust” algorithm that obtains an a-approximation ratio to
the problem maxgcz f(S) with exact value oracle. Then, A can be converted into an algorithm

achieving an (o — o(1))-approximation to the problem maxgez f(S) with the noisy oracle f.

The definition of “robust” is in Section[3.2]and the formal theorem is Theorem[3.4l We remark that
the conversion process above is agnostic to the algorithm .4 and just uses .4 as a black box.

Our reduction uses an idea proposed by previous work on noisy submodular maximization [[13,[16].
This idea is to estimate the value f(S) of a set S using the noisy value of some surrogate function
F(S)= ﬁ > -rers f(I') where Tg is a collection of sets related to S. One example is to choose

asmall set H and let Tg = {S U H' for H' C H}. In previous work, different surrogate functions

were constructed for different settings. Here, we construct a single surrogate function for all the

settings we consider (unconstrained non-monotone maximization, monotone and non-monotone

maximization under matroid constraints); see Section for details. Then, the reduction is to run the
. . . . . — 1 rs ~

algorithm A to maximize the noisy surrogate function F'(.S) = 5] Yorers f(T) = F(S).

The main technical challenge here is to ensure that the surrogate function F(S) approximates the
true function f(.S) well. As shown by [13,[16]], a deterministic surrogate function does not always
guarantee a good approximation to the true function. So, they need to use arguments that are specific



to their algorithms to show that the surrogate functions work well. A key insight in our work is the
use of a random surrogate function. We show that such a random surrogate function can approximate
the true function in all settings with matroid constraints (see Section[3.3)).

3.1 Surrogate Function

Let H C N be a subset of size |H| = h where h is a small integer. We call H a smoothing set. Let
t < h be another integer. Let H[t] = {H' C H : |H'| = t} be all the subsets of H of size t; there

are (}t’) such subsets. We use H' ~ H|t] to denote the random sample of a subset H' C H of size ¢
uniformly at random. Define a surrogate function FH * as follows:

FHYS) = Egproprpn [F(SUH)] > f(SUH'), VSCN. (1)

( ) wici
The surrogate marginal value of an element z with respect to S is Fi' () = FH!(S+z) — FI(S).

Remark 3.1. Another natural way to define a surrogate function would be to take the expectation
over all subsets of H and not just subsets of size t. This also works when the submodular function
f is monotone. Intuitively, this is because adding elements could never hurt. However, when f is

non-monotone, adding elements may degrade the value of f. We thus want to ensure that (?) is large
enough for denoising but t is small enough to limit the potential degradation.

Claim 3.2. The surrogate function Ft is submodular.

Because we do not have access to f, we cannot query the surrogate function F'+* directly. Instead,
we can query the noisy surrogate function'

FHY(S > f(SUH'), VSCN 2
( H'€H[t]
and the noisy surrogate marginal value FS Hx) = FHUS + ) — FH1(S). When ( ) is large,

FH:(S) is expensive to compute exactly. Instead, we can approximately compute F7:*(S) by
sampling m sets Hy, ..., H,, ~ H|[t] and taking the sample average:

FHAm(S) = % Z f(SUH;). 3)

To guarantee a good concentration property of =37 f(SU H;), we sample Hy, ..., H,, ~ HI[t]
without replacement to ensure that they are dlfferent sets, so f(S U Hy),...,f(SUH,,) are
independent. The following lemma shows that, with high probability, the sample average F'1:t:™(S)

is close to the noisy surrogate value F'**(S) and the noisy surrogate value F*1¢(.S) is close to the
true surrogate value F'¥1:*(.S), when the parameters h, t, m satisfy some condition:

Lemma 3.3. Let fiax > maxgcy f(S) be an upper bound on the maximum value of f. Suppose
the noise distribution D is (v, «)-sub-exponential. Suppose the integers h,t, m satisfy the following:

m > max{2, 81/2}@%@ +log%), t>logy(4m), and h=1t>. 4
Then, for 0 < e < %fmax, we have:
Pr [v

The proof of this lemma uses a Hoeffding inequality for sampling without replacement and a
concentration analysis for sub-exponential distribution. It is given in Appendix [B.1]

(8) - FHS)| e | =1~ 5)

3.2 A Meta-Algorithm for Noisy Submodular Maximization

We now present a “meta-algorithm” that converts any algorithm A for submodular maximization
with exact value oracle to an algorithm for noisy value oracle. Given a matroid Z and a set H C NV,
we consider the contraction of Z by H defined as

IH:{SQN\H:SUHGI}QI. 6)



In other words, 7 is the matroid where the independent sets are all sets whose union with H are
independent in Z. The meta-algorithm (Algorithm[I)) works as follows: pick an arbitrary basis By
of the original matroid Z, randomly sample a subset H of By of size h, run A to maximize the
approximate noisy surrogate function FH (S) over the minor matroid Zy to obtain a solution S,
and finally return the set Sy U H' where H' is a random subset of H of size ¢.

Algorithm 1: Meta-algorithm for noisy submodular maximization under matroid constraints

Input :Noisy oracle f for a submodular function on ground set N. Matroid Z.
Parameter:h,t, m.

1 Let By be an arbitrary basis of matroid Z, which has size | Bg| = r.

Sample a subset H of By of size h uniformly at random.

Run a submodular maximization algorithm A to solve maxgcz,, F*(S) using oracle FH:t,
obtaining a solution Sy € Zg.

4 Sample a subset H' of H of size ¢ uniformly at random.

Return Sy U H'.

Before presenting the main result for the meta-algorithm, we define the “robustness” of a submodular
maximization algorithm. Let .4 be an c-approximation algorithm for submodular maximization
under constraint Z using the exact value oracle f, namely: the solution S 4 returned by A satisfies
E[f(Sa)] > o maxgez f(S). We say A is robust if its performance degrades only a little if the
exact value oracle is replaced by an approximate oracle. This is formalized in the following definition.

Definition 3.1 (Robustness). An s-approximate oracle for submodular function f is a function
f 2N = R that satisfies | f(S) — f(S)| < e for any queried set S. Algorithm A is ((&)-robust
against e-approximate oracle if, when running A on e-approximate oracle f the returned solution
S 4 satisfies B[f(S4)] > a - maxger f(S) — B(e).

We are now ready to present our main result regarding the meta-algorithm.

Theorem 3.4. Suppose 0 < & < % fmax and the parameters h,t, m satisfy @) with 6 = 1/n. If
algorithm A has a-approximation ratio and is B(e)-robust against e-approximate oracle, then the
expected value of the solution ALG returned by Algortihm([l|satisfies:

* For non-monotone submodular f, E[f(ALG)] > a(1 — L+ — ;1 — 1) f(O*) — B(e).

« For monotone submodular f, E[f(ALG)] > a(1 — -2 — 1) f(O*) — B(e).

r—h

Let Q(A) be the query complexity of A. The number of queries to f made by Algorithm ism-Q(A).

3.3 Proof of Theorem[3.4]

A key step to prove Theorem [3.4] is to show that, with a randomly sampled smoothing set H,
maximizing the surrogate function /! is roughly equivalent to maximizing the original function f.
This is formalized by the following lemma, which we call a “smoothing lemma”.

Lemma 3.5 (Smoothing lemma). Let f be a submodular function.

* Forany f, we have Ep.p,n) [maXSEzH FH’t(S)] > (1 — rﬁh — ﬁ)f(O*)

« If f is monotone then Ep. g, | maxsez, FH(S)] > (1 - %)f(O*)

Proof of Theorem According to Lemma with probability at least 1 — §, the function FH-t-m
is an e-approximate oracle for F*>* for all sets S € Z. We denote this event by £. Conditioning on
&, the expected value of the solution ALG returned by Algorithm [I|satisfies

E[f(ALG) | (‘:] = EpnErandomness of.AEH/NH[t] [f(SH U H/) | (‘:]
= EpgErandomness of 4 [ (Sp) | €] by the definition of F!

> a-Ey Lgéz%)é FH’t(S)} — B(e) by (g)-robustness of A.



By the smoothing lemma (Lemma [3.3)), for any submodular function f, we have

h t
> - (1 — — *) .
E[f(ALG) | €] > a- (1- — -+ )(0") - ()
Since the event £ happens with probability at least 1 — §, we have
h t
> (1-— SN " - .
E[f(ALG)] > (1-4) <a(1 - ) f(0") B(z—:)) +6-0
h t
> S *) — )
> o(1= =5~ = ~9)7(0") - BE)
Letting § = % proves the theorem for the first case. For the monotone case, we can remove the ﬁ
term by Lemma O

It remains to prove Lemma[3.5]

Proof of Lemma[3.5] We prove this lemma for the non-monotone case here. The proof for the
monotone case is simpler and given in Appendix [B.2] We will use the following basis exchange
property for matroids.

Lemma 3.6 (Donald and Tobey [7]). For any two bases B1, Bs of a matroid, for any integer h > 1,
there exists a bijection o from subsets of By with size h to subsets of By with size h such that, for
every subset H C By with size h, Bo — o(H) + H is a basis.

Recall that O* = argmax 7 f(O) is an optimal solution for f over the original matorid Z. Since
f is non-monotone, O* is not necessarily a basis of matroid Z. Let B; O O* be any basis of matroid
T that contains O*. We apply Lemma [3.6]to bases By and B to obtain a bijection o between subsets
of By with size h and subsets of By with size h, such that By — o(H ) + H is a basis of matroid Z,
for every subset H C By with size h. We note that (By — o(H)) N H = (| so By — (H) belongs
to Zy. Because a matroid is downward-closed, we have O* — o(H) C By — o(H) € Zy. Thus,
maxg ez, FHU(S") > FHU(O* — o(H)). Taking expectation over H ~ By|[h], we get

iy | max F(S)] > By [FH4(0 — o(11)

] f(S’)} by Lemma [AJ3]

> En[f(0" - o(H)) - L
= H |:f(0 0-( )) |H‘ _ |H/| S’QOE%}((H)+H

> By [ (0"~ o(H)] -~ - £(0°).

Because o is a bijection between subsets of By and subsets of By and H is a uniformly random
subset of By with size h, o(H ) must be a uniformly random subset of B; with size h. By LemmalA.2]

B [§(0" o)) = [0") = i+ amax f(S') = (0°) = L5100 ®
This implies
By max F7(9)] > £(07) ~ 507 - L p0),
SeIy r—nh h—t
which proves the lemma for the non-monotone case. O

4 Noisy Submodular Maximization Under Specific Settings

In this section, we instantiate our meta-algorithm (Algorithm [I)) with existing algorithms for submod-
ular maximization with exact value oracle. By proving that existing algorithms are robust, we obtain
results for noisy submodular maximization under various specific settings.

3Otherwise, the size |B1 — o(H) + H| < |B1 — o(H)| + |H| = r — h+ h = r, contradicting the fact that
B: — o(H) + H is a basis and should have size r.



4.1 Matroid Constraints

Robustness of Measured Continuous Greedy. We first consider maximizing monotone and non-
monotone submodular functions under matroid constratins. We prove that the measured continuous
greedy algorithm of Feldman et al. [9] is robust. Here, we recall the algorithm (with exact value
oracle). First, define the multilinear extension of a submodular function f as

F(z) = Z f(S)HxiH(l—xi), vz € [0, 1]".
]

SCn i€S  igS

Then the algorithm works as follows. First, define 2:(0) = 0 (the 0 vector) and let 6 € (0, 1) be such
that 1/4 is an integer. Given a point x;(t) at time ¢, we first solve

y () € arg max { i c’)iF(:L’(t))yi},

where the arg max is taken over the matroid polytope P. Then we update x;(t 4+ 0) = x;(t) + 6(1 —
x;(t))y; (t). Finally, we use pipage rounding [4]] (which is an obvlious rounding scheme) to convert
the fractional solution x(1) to a discrete set S € Z. The pipage rounding technique guarantees that
E[f(S)] > F(x(1)). In addition, we have that F'(x(1))/f(OPT) > 1 — 1/e — O(n35) when f is
monotone and F(x(1))/f(OPT) > 1/e — O(n®§) when f is non-monotone.

The following lemma establishes the robustness of the measured continuous greedy algorithm.

Lemma 4.1 (Robustness of measured continuous greedy). For submodular function maximization
under matroid constraint, the measured continuous greedy algorithm [[9)] obtains a (1 — 1/e)-
approximation when f is monotone and a (1/e)-approximation when [ is non-monotone. Moreover,
the algorithm is O(ne)-robust.

The proof can be found in Appendix [C] In particular, see Lemma [C.6 for the monotone case and
Lemma@]for the non-monotone case. Note that, technically, Lemma@]has a small discretization
error but this can be made arbitrarily small so we omit it in the statement. In addition, we can absorb
the discretization error into the error due to noise in our theorem statements below.

Monotone Submodular Functions with Matroid Constraints. We apply Theorem [3.4] to the
problem of maximizing monotone submodular functions with matroid constraints under a noisy
value oracle. Let the algorithm A in Algorithm I]be the measured continuous greedy algorithm [9]

n~16nt5ioned above. Fix parameter ¢ € (0, %) Choose integer m > max{2, 81/2}2—;4 (n+log(4n)) =
O(%), t > logy(4m) = O(log(2)), and h = t? = O(log?(2)). Then, we apply Theoremand
Lemmawith parameter 1 = E];‘I% to obtain:

E[f(ALG) > (1-2)(1- - h - %)f(O*) — O(ney)

which immediately leads to the following corollary.

Theorem 4.2. Fixe € (0, %) Supposen > L and the matroid’s rank r > Q(% log2(%)). By letting
the A in Algorithm[I|be the measured continuous greedy algorithm [[9)], we obtain a polynomial-time
algorithm for maximizing monotone submodular functions under matroid constraints with noisy

oracle satisfying E[f(ALG)] > (1 -1 —0(e))f(0").

Previous work [[16] gave a polynomial-time algorithm with (1 — 1/¢)/2 — O(e) approximation ratio
for noisy monotone submodular maximization under matroid constraints, assuming n > e % and
r>e*/3 Our Theoremimproves [16] by increasing the approximation ratio to 1 — 1/e — O(e)
(which is the tight ratio even with the exact value oracle) as well as relaxing the condition on n and r.



In the special case of cardinality constraints, [16]’s algorithm achieves (1—1/e—O(e)) approximation
with O(r2n3 /&) query complexity (their Theorem 4.6). By letting A be the greedy algorithm with
query complexity Q(.A) = O(rn), our algorithm achieves the same approximation ratio with query
complexity m - Q(A) = O(n®/e2) - O(rn) = O(rn®/c%). While our query complexity might be
worse than [[16]], the advantage of our algorithm lies in its generality and better approximation ratio in
the more general matroid constraints case.

Non-Monotone Submodular Functions with Matroid Constraint. For non-monotone submod-
ular functions, choosing the parameters as above, by Theorem [3.4]and Lemma [4.T] we obtain the
following:

E(ALG) > - (1- L - ) (0%) — Ofne)
1 6og’(2) L *
> (- O(log”(2))  O(log?) n 0©)#0")

Theorem 4.3. Fixe € (0, *% 2 ). Supposen > L and the matroid’s rank r > Q(1 log? (Z)). By letting
the Ain Algorlthmg]be the measured continuous greedy algorithm [9], we obtain a polynomlal time
algorithm for maximizing non-monotone submodular functions under matroid constraints with noisy

oracle satisfying E[f(ALG)] > (1 - @(%g%) —0(2)) f(O").

The 1 ~ 0.367 approximation above is not necessarily tight. Buchbinder and Feldman [2] design a
0.401- approximation algorithm for non-monotone submodular maximization under matroid constraint
with exact value oracle. Their algorithm is quite technical, so we leave as an open question whether
their algorithm is robust against approximate value oracle. If their algorithm is robust, then it can be
directly converted to an algorithm for noisy non-monotone submodular maximization under matroid
constraint achieving 0.401 — o(1) approximation, using our Algorithm|I]

High-Probability Result. While our main results (Theorems [3.4] .2 and [4.3)) are stated in terms
of the expected value E[f(ALG)], we can obtain a high-probability result for maximizing monotone
submodular functions under noise. The idea is to repeat Algorithm [T multiple times and output the
best solution. The challenge here is to compare two sets S, .S using noisy values, without access to
the true values f(S1), f(S2). For monotone functions, one can construct another surrogate function

fo(S), by randomly removing an element from S, to do the comparison. Monotonicity combined
with submodularity ensures f(S) > fo(S) > (1 — I—é‘)f(S) Such an idea was also utilized by [16]].

However, constructing such surrogate functions for non-monotone functions becomes technically
challenging. The surrogate function above no longer works since removing an element could actually
improve the objective. Indeed, an approximate version of monotonicity is not true in general. We
leave for future work to obtain high-probability results for maximizing non-monotone functions under
noise. See Appendix [ for a detailed discussion.

4.2 Unconstrained Submodular Maximization

Finally, we consider maximizing any (non-monotone) submodular function without constraints.
Here, we instantiate Theorem [3.4] with the double greedy algorithm [3]] which is known to give a
1/2-approximation for unconstrained submodular maximization. At a high-level, the double greedy
algorithm works as follows. We first initialize two sets Xo = and Yy = N. Let N = {ey,...,en}.
Fort =1,...,n, we check the marginal value a, of adding e; to X;_; and the marginal value b; of
removing e; from X;_;. With probability a;/(a; + b;) (with some clipping operations if necessary),
we add e; to X;_; to get X, and set Y; = Y;_;. Otherwise, we set X; = X,;_; and remove e, from
Y;—1 to get Y;. A formal description of the algorithm can be found in Appendix [D} The key fact that
we require is the following lemma, with proof given in Appendix

Lemma 4.4 (Robustness of double greedy). The double greedy algorithm obtains 1/2-approximation
Sfor maximizing a submodular function without constraints. Moreover, the algorithm is O(ne)-robust.

D1rectly applymg Lemma [4.4] and the non-monotone case in Theorem [3.4] g1ves us an algorithm

for maximizing unconstrained non-monotone functions with noisy oracle w1th @(1Og Ty — O(e)



approximation ratio. Yet, the unconstrained case allows for a more refined analysis which gives a
better approximation ratio that removes the m term (see Appendix for the proof):
Theorem 4.5. Fix e € (0, %) Suppose n > Q(Llog®(2)). By letting the A in Algorithmbe the
double greedy algorithm [3|], we obtain a polynomial-time algorithm for maximizing unconstrained
non-monotone submodular functions with noisy oracle satisfying E[f(ALG)] > (3 — O(¢)) f(O*).

5 Simulation Results

In this section, we present simulation results to compare the performances of our proposed algorithm
(Algorithm [I)) and some heuristic algorithms for the noisy submodular maximization problem.

We focus on the simple yet underexplored case of unconstrained non-monotone noisy submodular
maximization. We consider an example where the submodular function is a weighted additive
function with quadratic cost in the subset size: VS C N, f(S) = >, . w; — ¢|S|?, where each
element ¢ has weight w; ~ Uniform[0, 20], with cost parameter ¢ = 10/n, so the ground set N has
expected value 0. When sampling w;, we ensure that f is non-negative. The noisy value function is
f(S) = €5£(S) where £g ~ Normal(y = 1,62 = 0.1). We compare four algorithms against the
optimal value benchmark f(O*) = maxgcy f(5):

* Double greedy (DG) with exact value oracle [3]: this is a worst-case optimal polynomial-time
algorithm in the noiseless setting. It uses the exact value oracle and is used only for reference.

* Double greedy (DG) with noisy value oracle: the DG algorithm that uses the noisy value oracle
directly. It is a natural algorithm to compare to, given the optimality of noiseless DG.

» Random subset: pick a subset of size n/2 uniformly at random.

* Our algorithm in Theorem [@.5} our surrogate-value-based meta algorithm (Algorithm [T))
instantiated with DG. After simple tuning, we set the parameters to h = 20, ¢ = 4, and vary m.

We run 1000 simulations. In each simulation, we first sample f (namely, the weights w;) and the

noisy function f (the multipliers £g), then run each of the above four algorithms once. Table |2{shows

the means E[f ;f\c?*(; )} and standard deviations of the true values of the obtained sets, as a fraction

of the optimal value. We observed that the heuristic algorithm, DG with Noisy Oracle, does not
perform well; it is only slightly better than Random Subset. Our algorithm significantly outperforms
the heuristic algorithms, with ~ 15% improvement with m = 50 and = 25% with m = 200.

Table 2: Comparison between ours and other algorithms, in the unconstrained non-monotone noisy
submodular maximization setting.

Ground | DG with
Set Size | Exact Oracle

DG with Random Our Algorithm Qur Algorithm
Noisy Oracle Subset (m = 50) (m = 200)

0.601 (x 0074y  0.550 (0079 0.674 (+ 0.067) 0.735 (£ 0.059)

n = 50 0.944 (+ 0.028)
0.565 (£ 0055  0.536 (£ 0057y 0.657 (& 0.047) 0.731 (£ 0.041)

n =100 | 0.944 (+0.019)

6 Conclusion and Future Work

In this paper, we developed a framework for noisy submodular maximization which allows us to
reuse existing robust algorithms for submodular maximization while obtaining essentially the same
approximation guarantee. As applications, we considered submodular maximization subject to a
matroid constraint (both monotone and non-monotone) and unconstrained non-monotone submodular
maximization. We conclude this paper with a few open questions. The first is to obtain high-
probability bounds for non-monotone submodular maximization. The second is to explore whether
there is some meta-algorithm that can take any existing algorithm and utilize it for the noisy setting.
Finally, an interesting open direction is to explore noisy submodular minimization.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This is a theoretical paper. The abstract and introduction describe our main
results and our techniques.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed, for example, that our work does not always get the tight
result (e.g. non-monotone submodular maximization subject to a matroid constraint; see
Section[d) and that we were not able to get high probability bounds for all our results (also
see Section[4).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

13



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We aimed to be precise in our theorem statements and to be precise in our
model. All our proofs either appear in the main body or in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code is uploaded.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: Our experiments do not involve typical machine learning training.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We presented sample standard deviation.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [NA]

Justification: We have reviewed the code of ethics and don’t think there should be any
violation.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Purely theoretical paper so unlikely to have any direct societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Purely theoretical paper so unlikely to pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: Purely theoretical paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Purely theoretical paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No use of human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No use of human objects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No direct link with LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Useful Facts

Lemma A.1. Let f be a non-negative submodular function. Let S; A C N be two sets. Let x be a
random element from A. Then E,.a[f(S) — f(S —z)] < I%le(s)'

Proof. Denote SN A = {w1,...,75n4/}. We have
E,va| £(5) = £(S\ {a})]
= Prlr € S0 A] Basoa [£(5) — (5 {z})]

|SNA|
- |S|2|A| ﬁ > [#(8) - 18\ ()]
|SNA|
< |S|2|A| ﬁ Z |:f(5\{l'1,,Jiz—l})_f(S\{xh73«;1_17%1})
- () - 151 )
< /S,
as desired. .

Lemma A.2. For any two sets S, A C N, for integer k > 1, sampling a subset B of size k from A
uniformly at random, we have:

Esmapg[F(S\B)] = £(S)—

_ max
|A| — k s/csna, |s7|>|SnA|—k

F(8").

Proof. The proof is by induction. Let B;_; be i — 1 random elements from A without duplicates.
Letb; € A\ B;_1 and B; = B;_1 U {b; }. By the induction hypothesis, we have

i—1

Eg, ; B,_1)] > - .
Bamali-y /(S Bica)] 2 £(5) |A| —i+1 s/csna, \ISI}EX\SMHH (%)
We now condition on B;_;. By Lemma[A.1] we have
1
Ep, [f(S\ Bi)] — f(S\ Bi-1) > —mf(s \ Bi-1).
Adding the last two inequalities gives E[f (S \ B;)] > f(S) — W;i maxg:csna,|s/|>|sna|—i f(S").
The lemma follows by induction. O

Lemma A.3. For any two sets S, A C N, for integer k > 1, sampling a subset B of size k from A
uniformly at random, we have:

Ep~am [f(SUB)| > f(9) u

A -k S/:sglsafb)c_(SuA

f(5).
Proof. Follows from Lemma|[A.2|by applying it to the submodular function g(S) = f(N \ S). O

B Missing Proofs from Section 3|

B.1 Proof of Lemma[3.3]

Lemma B.1 (Hoeftding’s inequality for sub-exponential distributions: see, e.g., page 29 in [24]]). Let
X1, ..., Xm be independent random variables where each X; is 0-mean and (v;, ov;)-sub-exponential.

_ m . _ m 2
Let oo, = max(>, o; and v, = />, v;. Then,

- _ _me? V2
Pr[%z&_‘zg] ; {2eXp( ) for0<e< A
i=1

Qexp(—%) f0r5>i

maoy
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Proof of Lemma3.3) Fix a set S C N\ H. Let p = F"4S) = Ep oy f(SUH') =
(T}L) Y wenp f(SUH'). By definition, Hy,..., Hy,, are sampled from H[t] without replace-

ment. Since each f(S U H’) is bounded in [0, fiax], by Hoeffding’s inequality for sampling without
replacement (see, e.g., Proposition 1.2 in [[1]]), we have

Pr H%if(swi)—u\ > o] < 2o (g ) < ©
i=1

. 22,
given m > % log %.

Assume that |-L Y™ f(SU H;) — p| < § holds. We then consider the difference

—ZfSUH ——ZfSUH ZX

" HiCH
where _
Xi=f(SUH;) = f(SUH;) = (§sum, — 1) f(SU H;)
is a random variable with mean E[X;] = 0 (by the unbiased property of noise) and is sub-exponential
with parameters
(Vfmaxs  Qfmax)-

Because the sets Hy, ..., H,, are sampled without replacement, we have H; # H; for i # j, so
S UH; # SU Hj. This means that the noise multipliers {syn, and {sun; are independent, so

X; and X; are independent. Then, we apply Lemma to % 27;1 X; with a, = afmax and

v = y/mv?f2 . to obtain

1 T £ m52 mEQ ,
Pr“%;)ﬁ‘>§] < 2€Xp(_8l/f/m) = 2exp<—m) < § (10)
2
given m > > 8 max log Z and 0 < £ £< T:; — I;J{max _ V2 fmax

Taking a union bound over (9) and (T0) and a union bound over all sets S C N \ H, we have with
probability at least 1 — 2 - 29", for all sets S € N\ H, we have both |- 37 | f(SUH;) — | < §

and |2 > X;| < < hold, which implies
. 1 &
FHHS) = FHS)| = |— SUH;) —p| < e
P ~FIS] = TS S0 ] < <

Let 6 = 2-2"¢’. The m has to satisfies

2 I%lax 2 8V2 I%lax 2
m > max{ = Og(;n Tl gd’}
fl’?’lax 4.2n
= max{2,81/2}€7210g s

2 4
= max{2, 81/2}% (n log 2 + log 5),

which is satisfied when m > max{2, 8%} 4= Tngx (n+1log3).

In order to sample m sets Hy, ..., H,, from H [t] without replacement, the h and ¢ have to satisfy

()=

for t < v/h and letting h = t2, we have
h pt Attt 2
> —2>—=—2>—2>m
t) T At T4t 4 T 4~
when t > log, (4m). O

By the inequality (}t’) > 4t,
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B.2 Proof of Lemma [3.5]for Monotone Submodular Function

We follow the proof for the non-monotone case until , where we have

En Lgé%},i FH’t(S)} = EuEpronp {f(O* —o(H) + H/)}

Because f is monotone, we immediately have f(O* —o(H) + H') > f(O* — o(H)) and hence

Eyr| max F™™(S)] > Eu[£(0" — ()]

by @ > F(0%) ~ (0",

C Robustness of Measured Continuous Greedy: Proof of Lemma 4.1

Algorithm 2: Measured continuous greedy [9]] with approximate value oracle

Input : Approximate value oracle f to a submodular function on ground set /N. Matroid Z.

Letn = [N|,§ =n%

Initialize t = 0, 2(0) = 0 € [0, 1]™.

while ¢ < 1 do

Let R(t) be the random set that contains each element i € N independently with probability

For each i € N, let &;(t) be an estimate of the expected marginal value E|f R(t)(1)], obtained
by taking the average of §3 log(2n) samples of fR(t) (7).

Let [(t) = argmax ez Y., <1 Wi (t) be a maximum-weight independent set.

Let 2(t + 6) be the following: for every i € N, x;(t + 0) ¢ i (t) + (1 — x;(t)) Li(t).

t—t+4.

end

Use pipage rounding [4]] (which does not require access to f ) to convert the fractional solution
x(1) to a discrete set S € 7.
return S

In this section, we establish the robustness of the measured continuous greedy algorithm [9] (the full

algorithm is given in Algorithm . Let f be an e-approximate value oracle for f. The proof for the
approximation ratios of the measured continuous greedy algorithm with exact value oracle is provided

by Feldman [8]]. We analyze how the e-approximate value oracle f will affect the approximation
ratios. The main step is Lemma[C.4] which provides a replacement of Corollary 3.2.7 of [8]. Once
this is established, we can apply the remaining arguments in Section 3.2.1 and Section 3.2.2 of 8]
by replacing the discretization error of O(n®§2) with the discretization and approximation error
established in Lemma[C.4]

Here, we use F' to denote the multilinear extension of the submodular f. In other words,

Fly= Y f(S) ][] [[Q -2, vaelo
]

SC[n icS  i¢S
We use F' to denote the multilinear extension with f replaced with f .

Fay= Y f(S ][ [[Q -2, vzelo
]

SCn i€S ¢S

We require two well-known properties of the multilinear extension.
Claim C.1. The partial derivatives of the multilinear extension F' satisfy:
* 0;F(z)=F(zx V1) - FlxAl3).
* 0;0;F(x)=F(xV1; V1) —FlxV1iAl;) = FlxAl; V1) + Fr Al A L)
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At a high level, the measured continuous greedy algorithm works as follows. Let § € (0,1) be
defined such that 1/4 is an integer. Let P be the matroid polytope. Given a point x;(t) at time ¢, we

use samples to estimate d; F'(z(t)) and then solve
y*(t) € arg max { Z @F(m(t))yl}
P i=1

Then we update x;(t 4+ 0) = ;(t) + 6(1 — z;(¢))y; (1).

Note that (1) is feasible since the update at time ¢ is bounded by dy*(¢) which is feasible and thus
(y*(0) + y*(1/6) + ...+ y*(1 — 1/4)) is also feasible. Since the matroid polytope is downward-
closed, we conclude that z(1) is feasible.

We use 1; to denote the vector whose ith coordinate is 1 and 0 otherwise and 1; = 1 — 1;. Let

OPT = argmaxgc7 f(S) be an optimal solution. We let o = FOPT)-

Lemma C.2. Suppose |f(S) — f(S)| < e = af(OPT). Then, for every i, we have |9;F;(x) —
;i Fy(x)| < 2af(OPT) = 2e.

Proof. Directly follows from Claim [C.T} O

Lemma C.3. §,F(z) = Levl)=F(@)

1—z;

Proof. This is a simple calculation. Indeed,

Fzvl)—xF(zVv1)—(1—x)F(xAl;)
].—.Ti
F(zVv1,)— F(x)
1—1‘1'

OF(x)=F(zxV1)—F@Al;) =

)

as desired. O

We now establish the main lemma of this section.

Lemma C.4. Suppose that | f(S) — f(S)| < a- f(OPT) forall S. Then F(x(t + 6)) — F(z(t)) >
§(F(z(t) V1opr) — F(2(t))) — (46an + n36%) f(OPT).

Proof. Let z = z(t + §) — x(t) and consider the univariate function g(s) = F(z(t) + sz). By a
Taylor expansion, we have

1

g'(0) = 5 max |g"(s)|.

F(z(t+90)) — 5 e

—~
8
—~
~
~
~—
Il
<
—~
—_
~—
\
Q
—~
(==
~
v

Taking derivatives, we have

and
Z Z ;0 F(x(t) + 52)2;25.

We have the bound [0;0, F'| < 2n - f(OPT) (second item of Claim|C.1) and |z;| < d so |¢"(s)] <
21352 f(OPT).
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Now, we bound ¢’ (0). We have
= Z O F(x(t))z

—6ZaF (L =z ())y; (t)

) Z O, Fy(x (1 —z;(¢)y; (t) — 20an - f(OPT) by Lemma[C.2]
> 6 Z iFy(x(t)) - (1 — z4(t)) — 26an - f(OPT)
i€OPT
>4 Z O F;(x (1 —x;(t)) — 46an - f(OPT) by Lemma|[C2]
i€OPT

=6 Y (F(a(t) vV 1;) — F(z(t)) — 46an - f(OPT).

i€OPT

By submodularity, we have Y .- (F(x(t) V 1;) — F(z(t))) > F(z(t) V lopr) — F(x(t)). To see
the last inequality, let ) = Sy C S; C ... C Sjopt| = OPT be such that [S; \ S;_1| = 1. Then

| OPT |
F(z(t) V lopr) — Z F(a(t)V1s,) = F(a(t) V1s,_,)

\OPT\
= Z F(l’(t) N 1Si—1+i) - F(:C(t) \ ]‘Si—l)'
i=1
We can then iteratively apply Lemma[C.5]to each summand. O
Lemma C.5. Foranyi # j, we have F(x vV 1;V1;) — F(z V 1;) < F(z V 1;) — F(x).

Proof. The inequality we want to prove can be written as
Eswalf(S+i+7) = F(S+1)] < Eswalf(S+35) = F(S)],

which is true since f is submodular. O
C.1 The Monotone Case
Lemma C.6. F(z(1)) > [1 — 1/e — O(an +n3§)] - f(OPT).
Proof. From Lemma[C.4] we have
F(2(t+6)) > (1 = 8)F(x(t)) + (0 — 4dan — n6%) f(OPT).
Let C = (1 — 4an — n36) f(OPT) so that the above equation becomes
Fz(t+9)>(1-98)F(x(t)) + oC.

Unrolling the recursion, we have

1/6—1 _ 1 (1= )5
F(z(1)) > Y (1-6)'6C = 00— 2 C(1~1/e —§/2),
i=0
where we used Claim[C.7]for the last inequality. Plugging in C' gives the claim. O

Claim C.7. Ifz < 0.5 then (1 — z)'/* < 1/e 4+ x/2e.

Proof. First, by a Taylor expansion, we have log(1 — x) <-4 %5 ® which is valid for all z € (0,1).
We thus have w < —1+%so0(1— )t/® < emler/?, Next, we use the numeric inequality
¢®/2 <1+ x which is valid for 2 < 2. So we conclude that w <e'(1+x/2). O
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From Lemma[C.6] we obtain
F(z(1)) > [1 = 1/e — O(an + n?5)] - f(OPT)
=[1-1/e—0O(n*})] - f(OPT) — O(en)
=[1-1/e—=0(%)] - f(OPT) — O(en),

with 6 = n~%in Algorithm which proves Lemmafor the monotone case.

C.2 The Non-Monotone Case

The following lemma can be established from following the proofs of Lemma 3.2.8, Lemma 3.2.9,
Corollary 3.2.10, and Lemma 3.2.11 from [8] verbatim but replacing O(n36) in their argument with
O(an + n3J) (i.e. Lemma|C.4).

Lemma C.8. F(z(1)) > [1/e — O(an +n3§)] - f(OPT)

This implies F(z(1)) > [1/e — O(£)] - f(OPT) — O(en) and proves Lemma {4.1| for the non-
monotone case.

D Robustness of Double Greedy: Proof of Lemma [4.4]

Algorithm 3: Double greedy [3]] with approximate value oracle

Input : An approximate value oracle f for a non-negative submodular function f : 2V — R,

Initialize Xo = 0, Yy = N.
Let (uq,...,u,) be an arbitrary order of the elements in N.
fori =1tondo
Let a; be the approximate value of a; = fx,_,(u;) = f(Xi—1 U{u;}) — f(Xi—1).
Let b; be the approxiamte value of b; = —fyio iy (i) = f(Yica \{us}) — f(Yio1).
(725, 7%)  ifa > 0andb; >0
Let (5, Gi) = 4 (1,0) ifa; >0andb; <0
(0,1) if a; < 0.
With probability p;, let X; = X;—1 U {w;}, i =Y;_1;
otherwise, let X; = X;_1, Vi =Y;_1 \ {w;}.
end

return X,, (which equals Y,,).

This section proves the robustness of the double greedy algorithm [3]] (given in Algorithm [3) against
approximate value oracle.

Lemma D.1. Suppose |a; —a;| < € and |b; — b;| < e. Let OPT = arg maxgc y f(S). The expected
value of the solution X,, returned by Algorithm[3]is at least -
3

E[f(X.)] > 5 f(OPT) ~ one. ()

Proof. Define the following quantity:
ri = max{pibi, Giai} — 5 (piai + 4ibi).- (12)

When the value oracle is exact, the probabilities p;, §; are computed from the correct marginal values
a; and b;:

(7%, 7%5) iféa; > 0andb; >0
(pi,qi) = (1,0) ifai > (0 and bl <0 (13)

(0,1) ifa; <0.
In this case, it can be easily verified that r; = max{p;b;, ¢;a;} — %(piai + ¢;b;) < 0. Due to
approximate oracle, r; = max{p;b;, G;a;} — %(ﬁiai + §;b;) may be positive. [19] show that the loss
of gerformance of the double greedy algorithm due to approximate oracle can be upper bounded by

Zi:l T
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Lemma D.2 (see Theorem 2.1 in [19]] or Lemma 4.3 in [11]). The expected value of the set X,
returned by Algorithm3|is at least:

n

1
E[f(Xn)] > 5f(OPT)—E[Y_ri]. (14)

i=1
Then, it remains to upper bound E[Y_"_, r;], which we do in the following lemma:

3e.

Lemma D.3. Suppose |a; — a;| < ¢ and |IA)Z —bi| <¢ thenr; <3

Proof. To simplify notations, we drop the subscript i, so 7 = max{pb, a} — % (pa + Gb). Consider
three cases separately:

« 4> 0and b > 0. In this case, we have p = aLer q= diﬂs,and

a—+

r= 1 . (max{&b, I;a} - %(&a + l;b))

Using the inequalities a < @ + €4, b < b +ep,and a > 0, b> 0,

r<- i 13 (max{a(d + 1), b(a + 2a)} — (8@~ e0) + b(b — 1))
= _1~_ 7 (di) + max{aey, be,} — % (0% + b2 — ae, — ng))
=3 _1~_ z (max{d5b7 bea} + L (aeq + bey) — 3 (a% + 0% — 2&?)))
< S _1~_ i (max{&gb, I;Ea} + %(dsa + Bab))
= max{pey, §eq } + %(;ﬁea + Gep)
< %5.

e G>0andb < 0. In this case, we have p = 1, ¢ = 0, and
r = max{b,0} — %a

On the one hand, b < b + & < €p. On the other hand, because a + b > 0 holds for any
submodular function [3]], we have a > —b > —g;,. Therefore,

r < max{e;,0} — 3(—ep) = ¢

e a < 0. In this case, we have p = 0, ¢ = 1, and
r =max{0,a} — b

On the one hand, a < a + €, < &,. On the other hand, because a + b > 0 holds for any
submodular function [3], we have b > —a > —¢,. Therefore,

r < max{0,e,} — 3(—¢cq) = 3¢&,.
All the three cases above give r < 3 max{e,,&p}. O
. . . . 1 3
Using Lemmasand we immediately obtain E[f(X,,)] > 35 f(OPT) — 5ne. O
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E Proof of Theorem

Lemma E.1. Fix any set S C N. Sample a uniformly random set H C N of size h. We have:
h g

B[ SNH)] 2 Baein [F2S)] = 5725 8 14

Proof. Let H' ~ H|[t] denote the random sampling of a subset H' of H with size ¢. By definition,
FH’t(S) = EH/NH[t]f(S @] H/) SO,
B [FI(S) — PI(S\ H)] = By [ £(SUH) — ((S\ H)UH')]

= EnEpronpy|f(SUH') = f(SUH)\ (H\ H'))|

= BB [f(SUH) = f(SUH)\ (H\ H)],
where the notation H|H’ means sampling H conditioning on H'. We note that, conditioning on H’,
the distribution of the set H \ H' is uniform across all subsets of N \ H' of size h — t. So, letting
B = H\ H’, we have

En(F(S) — F(S\ H)| = EwEpnp [f(SUH') = f((SUH)\ B)]

|B| , ]

Ey| ——mM——— L

= Bw | (g 1] o8, /(5] by Lemma[AZ
h
™~ 7 ).
= N[ =k sicnis <is+n ()
O
Lemma E.2. For any set S C N. Sample a uniformly random set H C N of size h, we have
h
]E ~ FH7t S > S e —— SI .
H N[h][ ( )] e f( ) ‘N|—hS’:SQS’Q%?\XSﬂg\S\-l-hf( )
Proof. Let H' ~ H]|t] denote a random subset of H with size ¢. Then, we have
EnnmFT(S)] = EgrnmEar g f(SUH')
= EH’NN[t] [f(S U Hl)]
t
> f(9) |N|—tS’:SQS/g%?T(S/|§|S\+tf( ) y Lemma[AJ]
h
> S B r—— Sl .
z 1(8) IN[— h 5:SCS'CN. 15/|<|S|+h ()
O

Proof of Theorem The double greedy algorithm has approximation ratio « = 1/2 and is 8(e1) =
O(ne1)-robust against €1 -approximate value oracle by Lemma Then, following the proof of

Theorem we have with probability at least 1 — § over the randomness of f, the expected value of
the final solution ALG satisfies

E[f(ALG) | £] > %IEHNN[,L][ max F7(S)| — Ome)

SCN\H
> %EHNNW [F7HO*\ H)] — O(ney) (because O* \ H C N \ H)
1 h
> 5(IE:HNW [FHH(07)] = —— f(o*)) — O(ney) by LemmalET]
> %(f(O*) —2n7ﬁhf(0*)) — O(ney) by LemmalE.2]
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Letting § = % and e; = £ f(O*), and taking into account the remaining ¢ probability, we have
E[f(ALG)] > (1 —0)E[f(ALG) | &]+0-0

SER S
= (5 - 00) ")
with b = ©(log? (%)) andn > Q(L log2(§)) O

F Discussion on High Probability Results

Our main results for noisy submodular maximization (Theorems [3.4] 4.2} 4.3] [4.5) are stated in terms
of the expected value E[f(ALG)] > (a — o(1)) f(O*). We discuss high-probability results in this
section.

A standard way to obtain high-probability results from expectation results is to repeat the randomized
algorithm multiple times and output the best solution. In our case, this means repeating Algorithm T]
for T times and picking the best set among the T" outputted sets S1, . .., S7. The challenge here is
how to compare two sets, in order to pick the best one, using noisy values instead of the true values.

For monotone submodular functions, Huang et al. [[16] provide a method to do noisy comparison.
For any set S C N, define the following comparison surrogate function f,(S) and the noisy version

fO(S)3
‘S|Zf |S‘Zf (15)

eesS e€sS
To compare two sets S7 and Sy, we compare fo(Sl) and fo(SQ).

Lemma F.1 ([I6]). Let=,6 € (0,1/2). Suppose |S| > £1log(2) where & is the sub-exponential
norm of the noise multiplier. Then,

Pr [[7o(S) = fo(S)] > efolS)] <. (16)

Now, suppose we repeat Algorithmfor T times and obtain solutions S1,...,S7. Let X; = f((sl )) €
[0,1]. By Theorem[4.2] the expected value of each solution satisfies E[f(Si)] (1-1/e—¢)f(O*),
namely E[X;] > 1 — 1/e — e. According to Markov’s inequality, Pr[X; < 1 —1/e — 2¢] =

Pr[l - X; >1/e+2¢] < 1[/1 f;’s] < 11/::286 ~ 1 — eg, hence

Pr{m?)iX <l-1/e—2| < (l—eE)T <4
ie[T

given T' > w. Namely, with probability at least 1 — §, we have
max f(S;) > (1—1/e—2¢)f(0). (17)

i€[T]

Let .S; be the best solution according to noisy comparison, namely i = arg mMax; e 7y fo( ). Let
i* = arg max; f(S;). The true value of S; satisfies

f(8;) = fo( 7) by monotonicity

> 1+€f0( ) by Lemma[FT

> 1+E fo(Si+) by the definition of i
1—

> 1+if0(5’i*) by Lemma[F]
1-— 1

=z 1+i(1* . )f(Si*) by Lemmal[AT]
1—¢ 1

> —|1- 1—--2 ¥ 17).

2 (- (-c-2)r0n vm
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For maximizing a monotone submodular function, the size of each solution satisfies |S;| = r. So, for
the failure probability of T" noisy comparisons to be less than §, according to Lemma[F.T| we need

1510 () =021 (L),

We thus obtain the following high-probability result for noisy submodular maximization for monotone
functions under matroid constraints:

Corollary F.2. Fixe € (0, %) Suppose the matroid’s rank v > Q(% logz(g) + Zlog (21%(51/6))).

By repeating the algorithm in Theorem{.2|for T = % times and outputting S;, we obtain an
algorithm for maximizing monotone submodular functions under matroid constraints with noisy value
oracle that, with probability at least 1 — ¢, returns a solution satisfying

550 2 (1= - 0()) 1(0").

For non-monotone submodular functions, the above approach to obtaining high-probability result
does not work because: (1) the f(S;) > fo(S;) step in the noisy comparison analysis no longer
holds, and (2) the size of the solution |.S;| can be less than the rank 7 of the matroid, so the (1 — ‘S—ll)
factor in the approximation ratio can be small. Another attempt on obtaining high-probability results
for non-monotone functions could be to use some concentration analyses for submodular functions,
such as [23]]. However, the concentration analyses in prior works usually require the Lipschitz
constant (the largest absolute marginal value) of the submodular function f to be small compared to
f(O*). It remains open how to obtain high-probability results for maximizing general non-monotone
submodular functions under noise.
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