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Will GDP grow next season?
Will it rain tomorrow?
Will stock price N17?

Is this image a cat or a dog?
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w € { yes, no }

Background: Forecast Aggregation

A principal wants to predict an unknown event w € {0, 1}
He/she collects (probabilistic) predictions fromn > 2
experts: Ty, ., 1y €10, 1]

 Q: How to aggregate these predictions into a single one?
*P= f(rlt ""r’n) € [O; 1]

A common approach in the literature -- Bayesian model.:
(w,S1,...,8,) ~ P

* 5; €S;is a private signal observed by expert i
* Predictions are posterior: r; = P(w = 1|s;)

Then, the theoretically “best” way to aggregate the
predictions is the Bayes rule:

p* — f*(rl) "-)rn) — P(Cl) =1 |7‘1, ...,T'n)

“best”: minimizing the squared error E[ |f (1) — w|?]

But in practice we hardly know P!
(instead, we have samples)

Sample Complexity of Forecast Aggregation

Tao Lin, Yiling Chen Harvard University

Main Question: Sample Complexity

e Oftentimes in practice we have samples from P (samples of
experts’ predictions and the realization of the event):

(1),0)(1)), ---»(7”1(T)» ,TrET) w(T))}

St = {(’rl(l), N o

 (Can we learn a good aggregator f = fST from S ?

* More specifically,

~
How many samples do we need to learn an €-optimal aggregator

f with probability at least 1 — 67
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Theorem 2 (Conditional Independence)

If experts’ signals sy, ..., s, are independent conditioned on w,

then:

/1 ~ (1
0(_) > Tceond-ind(&0) = Q(E)

Theorem 1 (General Case)

Assume |S;| = m. The sample complexity of forecast aggregation is:

0 (m” + lgozg(l/5)

m' 4 + 10g(1/5)>

&

) > T(s,6) = Q(

Proof idea 1: Reduction to Distribution Learning

We reduce forecast aggregation to/from the distribution learning

problem:
e given samples from an unknown discrete distribution D,

estimate D within total variation distance &ty.
| X |+ log(1/5))
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* has sample complexity ® (

Lemma 1 (informal):

E[|f@)— £ |<e = ID-DIlL <0WE) =tery
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Take-Away Message

Forecast aggregation in general is as difficult as distribution learning.

This is independent of # of experts and signals!
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Proof idea 2: Pseudo-Dimension

* Inthe cond. ind. case, the optimal aggregator has a simple
form: Letp = P(w = 1),

fr(ry, ...,

1

rn) —

functions associated with the aggregators of the form
rn) —

i=1 1,
optimal, if the number of samples is at least

p n-1 n 1— i
1+ (1 — p) (=1 T
FOry, .., —— is bounded by d = 0(1).
1 1 1 - /1
0 gz(d log — +log5) 0(8—2)

* We prove that the pseudo-dimension of the class of loss
1+6m 1 [[:
* This means that the empirically optimal aggregator is &-
Future Work

* Close the gap between €2 and &:
* Conjecture: should be ¢

* The case between general distributions and cond. Ind.
distributions?

e Recruiting more experts? (Obtaining samples is difficult.
Finding more people is easy. Can that help with
aggregation?)

 Continuous distributions, other loss functions, etc.




