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Abstract

In non-truthful auctions such as first-price and all-pay auctions, the independent strategic

behaviors of bidders, with the corresponding Bayes-Nash equilibrium notion, are notoriously dif-

ficult to characterize and can cause undesirable outcomes. An alternative approach to achieve

better outcomes in non-truthful auctions is to coordinate the bidders: let a mediator make

incentive-compatible recommendations of correlated bidding strategies to the bidders, namely,

implementing a Bayes correlated equilibrium (BCE). The implementation of BCE, however,

requires knowledge of the distributions of bidders’ private valuations, which is often unavail-

able. We initiate the study of the sample complexity of learning Bayes correlated equilibria in

non-truthful auctions. We prove that the set of strategic-form BCEs in a large class of non-

truthful auctions, including first-price and all-pay auctions, can be learned with a polynomial

number Õ( n
ε2 ) of samples of bidders’ values. This moderate number of samples demonstrates

the statistical feasibility of learning to coordinate bidders. Our technique is a reduction to the

problem of estimating bidders’ expected utility from samples, combined with an analysis of the

pseudo-dimension of the class of all monotone bidding strategies.

1 Introduction

Non-truthful auctions, among which the most ubiquitous and fundamental example is perhaps the

first-price auction (FPA), are gaining more popularity over truthful auctions (such as the second-

price auction) in the online advertising markets in recent years, due to reasons like transparency

and market competition [AL18, Slu19, Raj19, PLST20, GWMS22].

Non-truthful auctions require strategic bidding, and the classical equilibrium notion for such

games is Bayes Nash equilibrium (BNE), where bidders with private valuations choose bidding

strategies independently to maximize their own payoffs. In auctions like FPA, however, the in-

dependent choices of strategies by bidders, with the corresponding BNE notion, are known to be

problematic. For example, the independent learning dynamics of bidders do not always converge to

BNE; they often oscillate, cause undesirable instability to the system, or lead to outcomes with low
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welfare or low revenue [EO07, DHLZ22, BS22, PLPS+24, BLO+25]. When bidders’ private valu-

ations are not independent and identically distributed, the BNE of FPA is notoriously difficult to

characterize or compute [CP23, FRGHK24]. In such scenarios, BNE is no longer a good prediction

for bidders’ behavior or a desired outcome for the designer of an auction system.

An alternative, potentially more desirable, equilibrium concept for non-truthful auctions is

Bayesian correlated equilibrium (BCE). Bidders in real-world auctions sometimes communicate

with each other before deciding on their bids, in which case BNE is not an appropriate equilibrium

concept because it assumes independent decisions. The equilibrium outcome of a game where play-

ers communicate before making decisions is equivalent to a correlated equilibrium [For86, Mye91].

Moreover, players’ communication can be facilitated by a central coordinator. In modern online

advertising auctions, bidders delegate their bidding tasks to third-party platforms that run auto-

bidding algorithms [ABB+24], and those platforms can, at least in principle, coordinate different

bidders’ bids [DGPS23]. Such coordination might increase bidders’ welfare (because the set of

BCEs is weakly larger than the set of BNEs), as well as stabilize the auction system by avoiding

the possibly chaotic dynamics caused by independent auto-bidding [PLPS+24].

Although BCE might be more desirable than BNE for bidders, third-party bidding platforms,

and auction system designers, the implementation of a BCE is not easy. To implement a BCE, the

coordinator has to recommend correlated bidding strategies to bidders in an incentive-compatible

way: conditioning on the recommendation, each bidder should be willing to use the recommended

strategy. To achieve this goal, the coordinator must know the expected payoff to each bidder under

the recommended strategy. While players’ payoffs are easily computable in complete-information

games, it is not the case in incomplete-information games like auctions, where players (bidders)

have private types (valuations) that affect their actions (bids), so each player’s expected payoff

depends on the distributions of other players’ private types. To implement a BCE in auctions, the

coordinator has to know the bidders’ value distributions, but such distributions are hardly available

in practice, because samples of bidders’ private values are often limited and costly to obtain.

Motivated by the intricate dependency of BCE on players’ type distributions, this work aims to

characterize the sample complexity of BCE in non-truthful auctions. Our main question is: How

many samples from bidders’ value distributions do we need to reconstruct the set of all BCEs in

a non-truthful auction (such as first-price auction)? Note that our goal is to learn the set of all

BCEs, not just one BCE. Learning the set of all BCEs allows the coordinator to pick the best BCE

to implement, according to any definition of “best”.

Overview of Our Contributions. We initiate the study of the sample complexity of Bayesian

correlated equilibrium in non-truthful auctions. In our model, n bidders have independent but not

identically distributed private values v1 ∼ D1, . . . , vn ∼ Dn. As there are multiple notions of BCEs

in the literature [For06], we focus on the strategic-form BCE, where a coordinator samples a profile

of bidding strategies σ = (σ1, . . . , σn) from a joint distribution Q and privately recommends each

strategy σi to the corresponding bidder i, such that every bidder is willing to obey the recommended
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strategy given their posterior belief about others’ strategies. We show that the set of strategic-form

ε-BCEs of a large class of non-truthful auctions (including first-price and all-pay auctions) can be

learned with a polynomial number of samples of bidders’ values: Õ( n
ε2
), where n is the number of

bidders. (The Õ(·) notation omits logarithmic factors.) Formally presented in Theorem 4.6, our

sample complexity result holds for any distributions of bidders’ private values that are bounded

and independent. The moderate Õ( n
ε2
) sample complexity demonstrates the statistical feasibility

of learning to coordinate bidders in non-truthful auctions in data-scarce scenarios.

Overview of Our Techniques. A straightforward attempt to bound the sample complexity

of BCE is to analyze the number of samples needed to learn the bidders’ value distributions

D1, . . . , Dn. If we could learn the distributions with accuracy ε, then the BCE computed from

the learned distributions would be an ε-BCE on the true distributions. However, since each Di is

an arbitrary distribution on a continuous support (the space of value), it is impossible to learn such

a distribution accurately using a small number of samples.

Instead, our approach to proving the Õ( n
ε2
) sample complexity of BCE is a reduction to the

utility estimation problem: given a set of joint bidding strategies B, we aim to estimate each

bidder’s expected payoff under any joint bidding strategy σ in B, using samples of bidders’ values.

We show that, when B consists of all bidding strategies that are monotonically increasing, each

bidder’s expected payoff can be estimated using Õ( n
ε2
) samples. Interestingly, the utility estimation

problem cannot be solved with finitely many samples if B contains all (possibly non-monotone)

bidding strategies (shown in Proposition 3.2). But fortunately, strategic-form BCEs are always

monotone (an interesting observation we prove in Proposition 2.3), so it suffices to estimate utilities

for monotone bidding strategies only. As a result, the set of ε-BCEs can be learned using the same

amount of samples, Õ( n
ε2
). To prove the aforementioned sample complexity of the utility estimation

problem, we use a technique from statistical learning theory, involving a non-trivial analysis of the

pseudo-dimension of bidders’ utility functions under monotone strategies. We also prove an almost

matching lower bound: Ω( n
ε2
) samples are necessary to estimate bidders’ expected utilities for all

monotone strategies.

In addition to BCEs, our utility estimation result also implies a sample complexity for learning

BNEs (Theorem 4.7). Similarly to BCEs, BNEs in non-truthful auctions like FPA are also monotone

(this is an observation by [MR00] and a corollary of our Proposition 2.3), so the expected utilities

of the bidders under BNEs can be estimated with Õ( n
ε2
) samples as well. Therefore, the sample

complexity of learning the set of all BNEs is also upper bounded by Õ( n
ε2
).

1.1 Related Works

Coordination in Auctions. Bidder’s coordination, or collusion, is a long-standing topic in the

traditional auction literature [GM87, MZ91, MM92, MM07, HPT08, LMS11] and has recently been

studied in the online ad auction domain as well [DGP20, RCMG22, DGPS23, CWD+23]. Contrary

to the previous view that collusion can undermine the auctioneer’s revenue, we take a positive
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viewpoint here: coordination might be desirable for the system designer. This is because: (1)

coordination might prevent the unstable strategizing behaviors of independent bidders; (2) the set

of BCEs is larger than the set of BNEs in theory, so the coordinator can potentially induce an

equilibrium with a (weakly) higher revenue or welfare than any independent equilibrium.

Bayesian Correlated Equilibrium in General Games. Incentivizing bidders to coordinate

is equivalent to finding a Bayes correlated equilibrium in the auction game. The classical notion of

correlated equilibrium [Aum74] is defined for complete information games. For incomplete infor-

mation games like auctions with private values, the literature has defined multiple notions of Bayes

correlated equilibria, such as strategic-form BCE, agent-normal-form BCE, and communication

equilibrium [Mye82, For06, BM16, Fuj23]. We consider the strategic-form BCE [For06] where the

coordinator recommends randomized joint bidding strategies to all bidders without knowing the

bidders’ private values. This type of BCE satisfies monotonicity (as we will show in Proposition

2.3) and does not alter any bidder’s belief about other bidders’ private values. These two crucial

properties ensure the learnability of the BCE when bidders’ value distribution is unknown.

Sampling from Value Distributions. An assumption of our work is that the learner has sample

access to the underlying distribution of bidders’ values. This is a standard assumption in the

literature of learning in mechanism design [e.g. CR14, MR15, MR16, BSV16, BSV18, GN17, Syr17,

GW18, GHZ19, BCD20, YB21, GHTZ21]. While most of those works study revenue maximization

in truthful auctions, we consider the under-explored problems of utility estimation and equilibrium

learning in non-truthful auctions.

Value samples have been assumed in the context of learning in non-truthful auctions [BSV19,

Vit21]. Just as in classical microeconomics, prior knowledge (in the form of samples here) comes

from market research, survey, simulation etc., and is not assumed to be from past bidding history.

We distance our approach from the line of work on learning non-truthful auctions where samples

are from past bidding history [CHN17, HT19]. This latter approach, with obvious merits, has

its limitations. Crucially, it assumes that the observed bidding in a non-truthful auction is at

equilibrium, which may not be the case in reality. Also, to avoid strategic issues between auctions,

the bidders need to be short-lived or myopic. The two approaches (value samples vs. bid samples)

complement each other even in learning problems for non-truthful auctions. This work takes the

first approach, and leaves the direction with bid samples as an enticing open question.

Utility Estimation in Games. Given a non-truthful auction, [BSV19] studied the number of

value samples needed to learn the maximal utility a bidder could gain by non-truthful bidding,

when all other bidders are truthful. In comparison, we learn utilities when all bidders use arbitrary

monotone bidding strategies; this suffices for the study of virtually all properties of an auction,

including the task of [BSV19].1

1Our results imply that the maximal utility (w.r.t the opponents’ value distribution) obtained by non-truthful
bidding can be approximated by the maximal obtainable utility w.r.t. the empirical distribution, which can be
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[AVGCU19, MTG20, DHZ+23] studied utility estimation and equilibrium learning for general

normal-form games with random utility matrices (with sample access). Similar to us, they frame

the problem as a PAC learning problem and bound the number of samples using complexity mea-

sures (e.g., Rademacher complexity, covering number) of some function classes. But they did not

characterize those complexity measures for specific games. Bounding those complexity measures is

generally challenging, if not impossible. For example, without monotonicity in bidding strategies,

the pseudo-dimension of the utility functions in first-price auctions is unbounded, as implied by

our Proposition 3.2.

Equilibrium Computation in Auctions. There is a large literature on the computation of

equilibrium in non-truthful auctions [e.g. MMRS94, FG03, GR08, EMR09, WSZ20, CP23, FRGH+21,

FRGHK24]. Although there has been major progress on the computation of BNE in first-price auc-

tions with common prior distributions [WSZ20, CP23], this problem turns out to be PPAD-hard

with subjective prior distributions [FRGH+21]. On the other hand, a BCE is known to be easier

to compute than a BNE [FRGHK24], which provides an additional motivation for us to study the

BCE of non-truthful auctions.

2 Preliminary: Auctions, BNE, and BCE

Auctions. Consider a single-item auction with n bidders denoted by [n] = {1, . . . , n}. Each bid-

der i ∈ [n] has a private value vi drawn from a distributionDi supported on Ti ⊆ [0, H] ⊆ R+, where

H is an upper bound on the bidder’s value. The size of the support |Ti| can be infinite. Different bid-

ders’ values are independent and can be non-identically distributed, so the joint value distribution

D =
∏n

i=1Di is a product distribution. Each bidder i makes a sealed-envelope bid of bi ∈ [0, H].

The auction maps the vector of bids b = (b1, . . . , bn) to allocation and payments, where allocation

xi(b) ∈ [0, 1] is the probability with which bidder i receives the item, with
∑n

i=1 xi(b) ≤ 1, and

payment pi(b) is the payment made by bidder i to the auctioneer. Bidder i’s ex post utility is

denoted by

Ui(vi, b) := vixi(b)− pi(b). (1)

We focus on the allocation rule where the bidder with the highest bid wins, with ties broken

randomly: xi(b) =
I[bi=maxj∈[n] bj ]

| argmaxj∈[n] bj |
. Auctions with reserve prices can be modeled by adding an

additional bidder who always bids the reserve price.

We consider any payment function of the following form:

pi(b) = xi(b)fi(bi) + gi(bi). (2)

where functions fi and gi satisfy 0 ≤ fi(bi), gi(bi) ≤ H. For example,

computed by enumerating the samples in the empirical distribution because a best-responding bid must be equal to
(or slightly more than) some opponent’s value from the empirical distribution.
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• in the first-price auction (FPA), the highest bidder wins the item and pays her bid, and other

bidders pays zero: pFPAi (b) = xi(b)bi.

• In the all-pay auction (APA), the highest bidder wins the item but all bidders pay their bids:

pAPA
i (b) = bi. APA is a good model for, e.g., crowdsourcing [CHS12].

We assume that, fixing the bids b−i of other bidders, if bidder i wins the item at bid bi, then her

payment must be strictly increasing in her bid: ∀b′i > bi,

xi(bi, b−i) > 0 =⇒ pi(b
′
i, b−i) > pi(bi, b−i). (3)

This condition is satisfied by both first-price and all-pay auctions.

Strategies and Equilibria. A (bidding) strategy σi : Ti → [0, H] is a mapping from the bidder’s

value vi to bid bi = σi(vi). Let Σi = Ti → [0, H] be the strategy space of bidder i, and let

Σ =
∏n

i=1Σi be the joint strategy space of all bidders. Let b = σ(v) = (σ1(v1), . . . , σn(vn)) denote

the bids of all bidders, and b−i = σ−i(v−i) denote the bids of bidders except i. When other bidders

use strategies σ−i, bidder i with value vi and bid bi obtains interim utility

ui(vi, bi,σ−i) :=Ev−i∼D−i [Ui(vi, bi,σ−i(v−i))] (4)

=Ev−i∼D−i [vixi(bi,σ−i(v−i))− pi(bi,σ−i(v−i))] .

We define Bayes Nash equilibrium for the auction game:

Definition 2.1 (Bayes Nash equilibrium). For ε ≥ 0, a joint bidding strategy σ = (σ1, . . . , σn) is a

(pure-strategy) ε-Bayes Nash equilibrium (ε-BNE) for value distribution D =
∏n

i=1Di if for each

bidder i ∈ [n], any value vi ∈ Ti, any bid b′i ∈ [0, H],

ui(vi, σi(vi),σ−i) ≥ ui(vi, b
′
i,σ−i)− ε.

When ε = 0, σ is a Bayes Nash equilibrium (BNE).

We also define a Bayes correlated equilibrium for the auction game. Correlated equilibria are

typically defined for complete information games. For incomplete information games like auctions,

there are multiple definitions of Bayes correlated equilibria in the literature [For06]. We consider the

“strategic-form Bayes correlated equilibrium” in [For06], which regards the incomplete information

game as a normal form game where a player’s pure strategy is the mapping σi. A correlation device,

or mediator, can sample a joint strategy σ = (σ1, . . . , σn) from a joint distribution Q ∈ ∆(Σ), and

recommend each strategy σi to the respective bidder i, while ensuring that no bidder has incentive

to deviate from the recommended strategy.

Definition 2.2 (Bayes correlated equilibrium). For ε ≥ 0, a distribution Q ∈ ∆(Σ) over joint

bidding strategies is an ε-Bayes correlated equilibrium (ε-BCE) for value distribution D =
∏n

i=1Di
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if for each bidder i ∈ [n], any value vi ∈ Ti, any deviation function ϕi : Σi × Ti → [0, H],

Eσ∼Q

[
ui(vi, σi(vi),σ−i)

]
≥ Eσ∼Q

[
ui(vi, ϕi(σi, vi),σ−i)

]
− ε.

When ε = 0, Q is a Bayes correlated equilibrium (BCE).

A pure-strategy BNE is a BCE where bidders’ joint strategy σ = (σ1, . . . , σn) is deterministic. A

mixed-strategy BNE is a BCE where bidders’ strategies σ1, . . . , σn are randomized and independent.

We say a bidding strategy σi is monotone if it is weakly increasing: v ≥ v′ ⇒ σi(v) ≥ σi(v
′), A

joint bidding strategy σ is monotone if all individual strategies σ1, . . . , σn are monotone. A BCE

Q ∈ ∆(Σ) is monotone if every joint strategy σ sampled from Q is monotone. [MR00] show that

the BNEs of auction games are “essentially monotone”. We generalize their result to BCEs.

Proposition 2.3. Under Assumption (3), any BCE Q ∈ ∆(Σ) of the auction game is “essentially

monotone” in the following sense: for almost every joint strategy σ = (σ1, . . . , σn) sampled from

Q, every bidder i’s strategy σi(vi) is weakly increasing except when vi is too low that bidder i wins

the item with probability 0.

Proof. Let Q ∈ ∆(Σ) be a BCE, with σ ∼ Q. Suppose bidder i’s strategy σi is not weakly

increasing on two values vi < v′i, namely, bi = σi(vi) > b′i = σi(v
′
i). By the definition of BCE,

conditioning on bidder i being recommended σi, we have

Eσ−i|σi
[ui(vi, bi,σ−i)] ≥ Eσ−i|σi

[
ui(vi, b

′
i,σ−i)

]
.

Define interim allocation xi(bi) = Eσ−i|σi
Ev−i∼D−i [xi(bi,σ−i(v−i))] and interim payment pi(bi) =

Eσ−i|σi
Ev−i∼D−i [pi(bi,σ−i(v−i))]. Then we have

vixi(bi)− pi(bi) ≥ vixi(b
′
i)− pi(b

′
i). (5)

Switching the roles of vi and v′i,

v′ixi(b
′
i)− pi(b

′
i) ≥ v′ixi(bi)− pi(bi). (6)

Adding (5) and (6), we obtain

(
v′i − vi

)
·
[
xi(b

′
i)− xi(bi)

]
≥ 0.

Since v′i > vi, we obtain xi(b
′
i) ≥ xi(bi). But under the assumption of bi > b′i, we have xi(b

′
i) ≤ xi(bi)

because the function xi(·) is weakly increasing. Therefore, it must be

xi(b
′
i) = xi(bi). (7)
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Plugging (7) into (5) and (6), we obtain

pi(b
′
i) = pi(bi).

If xi(b
′
i) = xi(bi) > 0, then we have pi(bi) > pi(b

′
i) by Assumption (3), which leads to a contradiction.

So, it must be xi(b
′
i) = xi(bi) = 0, which means that bidder i never wins the item under values vi

and v′i.

Since BCE is essentially monotone and any essentially monotone BCE can be converted to a

monotone BCE without affect any bidder’s expected utility, we will restrict attentions to monotone

BCE. The set of monotone ε-BCEs depends on the bidders’ value distribution D. We denote this

set by

BCE(D, ε) =
{
Q ∈ ∆(Σ)

∣∣ Q is monotone and is an ε-BCE on value distribution D
}
.

Our goal: Our goal is to learn the set BCE(D, ε) when bidders’ value distribution D is unknown

and can only be accessed by sampling. We aim to characterize the number of samples that are

needed to achieve this goal.

3 Sample Complexity of Estimating Utility

A crucial step to learn the set of BCEs in an auction with unknown distribution D is to estimate

the bidders’ expected utility for any given joint bidding strategy σ. We call this problem utility

estimation. The utility estimation problem is also interesting by itself, so we study the sample

complexity of utility estimation in this section.

Formally, we are given a set of m samples S = {v(1), . . . ,v(m)} from the value distribution

D =
∏n

i=1Di, where each sample v(j) = (v
(j)
1 , . . . , v

(j)
n ) contains the values of all bidders, we

aim the estimate the expected utility of every bidder under every possible joint bidding strategy

σ. A utility estimation algorithm, denoted by A, takes the samples S, bidder index i, value vi,

and all bidders’ strategies σ as input, outputs A(S, i, vi,σ) to estimate bidder i’s interim utility

ui(vi, σi(vi),σ−i) = Ev−i∼D−i [Ui(vi, σi(vi),σ−i(v−i))].

Definition 3.1 (utility estimation). Let B ⊆ Σ be a set of joint bidding strategies. For ε > 0, δ ∈
(0, 1), we say an algorithm A (ε, δ)-estimates with m sample the utilities over B if, for any value

distribution D, with probability at least 1− δ over the random draw of m samples from D, for any

joint bidding strategy σ ∈ B, for each bidder i ∈ [n] and any value vi ∈ Ti,∣∣A(S, i, vi,σ)− ui(vi, σi(vi),σ−i)
∣∣ < ε.

We aim to estimate the interim utility in the above definition, instead of the ex ante utility

Ev∼D[Ui(vi,σ(v))], because the ex ante utility is difficult to estimate due to the randomness of
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bidder i’s own value. Even in a first-price auction with a single bidder, the bidder’s ex ante utility

Evi∼Di [vi−σi(vi)] cannot be estimated using finitely many samples for all distributionsDi and for all

strategies σi simultaneously. The interim utility ui(vi, bi,σ−i) = Ev−i∼D−i [Ui(vi, bi,σ−i(v−i))], on

the other hand, does not involve randomization over bidder i’s own value and is easier to estimate.

We note that the utility estimation problem cannot be solved if B contains all possible bidding

strategies, including non-monotone and monotone ones.

Proposition 3.2. The utility estimation problem cannot be solved with finitely many samples if B
contains all possible bidding strategies.

Proof. Consider an auction with two bidders, the first bidder having value 1 and bidding 1
2 , and the

second bidder’s value v2 uniformly drawn from [0, 1]. Any finite set of samples of v2 has probability

measure 0 in the distribution of v2. Therefore on any set of samples, there are bidding strategies of

bidder 2 that look the same on the sampled values but give bidder 1 drastically different utilities

in expectation on the value distribution.

Given the above impossibility result, we restrict B to be the set of monotone joint bidding

strategies. This is without loss of generality according to Proposition 2.3.

3.1 Upper Bound of Sample Complexity of Utility Estimation

In this subsection, we show that Õ(n/ε2) value samples suffice for estimating the interim utilities for

all monotone bidding strategies. The estimation algorithm is the empirical distribution estimator,

which outputs the expected utility on the uniform distribution over the samples.

Definition 3.3. The empirical distribution estimator, denoted by Emp, estimates interim utilities

on the uniform distribution over the samples. Formally, on samples S = {v(1), . . . ,v(m)}, for

bidder i with value vi, for joint bidding strategy σ,

Emp(S, i, vi,σ) :=
1

m

m∑
j=1

Ui

(
vi, σi(vi),σ−i(v

(j)
−i )
)
.

We now state an upper bound on the sample complexity of utility estimation, which is Õ(H
2

ε2
n)

when ignoring logarithmic factors.

Theorem 3.4 (Utility estimation by empirical distribution). Suppose Ti ⊆ [0, H]. For any ε >

0, δ ∈ (0, 1), there is

M = O

(
H2

ε2

[
n log n log

(
H

ε

)
+ log

(n
δ

)])
,

such that for any m ≥ M , the empirical distribution estimator Emp (ε, δ)-estimates with m samples

the utilities over the set of all monotone bidding strategies.
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3.1.1 Pseudo-Dimension and the Proof of Theorem 3.4

To prove Theorem 3.4, we use a tool called pseudo-dimension from stasitical learning theory (see,

e.g., [AB09]), which captures the complexity of a class of functions.

Definition 3.5. Let H be a class of real-valued functions on input space X . A set of inputs

x1, . . . , xm is said to be pseudo-shattered if there exist witnesses t1, . . . , tm ∈ R such that for any

label vector l ∈ {1,−1}m, there exists hl ∈ H such that sgn(hl(xi)− ti) = li for each i = 1, . . . ,m,

where sgn(y) = 1 if y > 0 and −1 if y < 0. The pseudo-dimension of H, Pdim(H), is the size of

the largest set of inputs that can be pseudo-shattered by H.

Definition 3.6. For ε > 0, δ ∈ (0, 1), a class of functions H : X → R is (ε, δ)-uniformly convergent

with sample complexityM if for any m ≥ M , for any distribution D on X , if x(1), . . . , x(m) are i.i.d.

samples from D, with probability at least 1−δ, for every h ∈ H,
∣∣Ex∼D[h(x)]− 1

m

∑m
j=1 h(x

(j))
∣∣ < ε.

Theorem 3.7 (See, e.g., [AB09]). Let H be a class of functions with range [0, H] and pseudo-

dimension d = Pdim(H), for any ε > 0, δ ∈ (0, 1), H is (ε, δ)-uniformly convergent with sample

complexity O
(
H2

ε2

[
d log(Hε ) + log(1δ )

])
.

We prove Theorem 3.4 by treating the utilities on monotone bidding strategies as a class of

functions, whose uniform convergence implies that Emp learns the interim utilities.

For each bidder i, let hvi,σ be the function that maps the opponents’ values to bidder i’s ex

post utility:

hvi,σ(v−i) = Ui(vi, σi(vi),σ−i(v−i)).

Let Hi be the set of all such functions corresponding to the set of monotone strategies,

Hi =
{
hvi,σ(·) | vi ∈ Ti, σ is monotone

}
.

By Equation (4), the expectation of hvi,σ(·) over D−i is the interim utility of bidder i:

Ev−i∼D−i [h
vi,σ(v−i)] = ui(vi, σi(vi),σ−i).

By Definition 3.3, on samples S = {v(1), . . . ,v(m)}, Emp(S, i, vi,σ) = 1
m

∑m
j=1 h

vi,σ(v
(j)
−i ). Thus,∣∣∣Emp(S, i, vi,σ)− ui(vi, σi(vi),σ−i)

∣∣∣
=

∣∣∣∣∣∣Ev−i∼D−i [h
vi,σ(v−i)]−

1

m

m∑
j=1

hvi,σ(v
(j)
−i )

∣∣∣∣∣∣ . (8)

The right hand side of (8) is the difference between the expectation of hvi,σ on the distribution

D−i and that on the empirical distribution with samples drawn from D−i. Now by Theorem 3.7,

to bound the number of samples needed by Emp to (ε, δ)-estimate the utilities over monotone

strategies, it suffices to bound the pseudo-dimension of Hi. With the following key lemma, the
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proof of Theorem 3.4 is completed by observing that the range of each hvi,σ is within [−H,H] and

by taking a union bound over i ∈ [n].

Lemma 3.8. Pdim(Hi) = O(n log n).

The proof of Lemma 3.8 follows a powerful framework introduced by [MR16] and [BSV18] for

bounding the pseudo-dimension of a class H of functions: given inputs that are to be pseudo-

shattered, fixing any witnesses, one classifies the functions in H into subclasses, such that the

functions in the same subclass output the same label on all the inputs; by counting and bounding

the number of subclasses, one can bound the number of shattered inputs. Our proof follows this

strategy. To bound the number of subclasses, we make use of the monotonicity of bidding functions,

which is specific to our problem.

Proof of Lemmea 3.8. By definition, given any vi and σ (with bi = σi(vi)), the output of hvi,σ on

input v−i is

hvi,σ(v−i) = vixi(b)− pi(b)

= vixi(b)− xi(b)fi(bi)− gi(bi)

=
(
vi − fi(bi)

)
xi(b)− gi(bi).

Because the allocation xi(b) is that the highest bidder wins with random tie breaking, hvi,σ(v−i)

must take one of the following n+ 1 values:

vi − fi(bi)− gi(bi),
vi−fi(bi)

2 − gi(bi), . . . , vi−fi(bi)
n − gi(bi), 0− gi(bi).

This value is fully determined by the n− 1 comparisons bi ⪋ σj(v
k
j ), one for each j ̸= i.

Let v
(1)
−i , . . . ,v

(m)
−i be any m inputs. We argue that the function class Hi can be divided into

O(m2n) sub-classes {Hk
i }k∈[m+1]2(n−1) such that each sub-class Hk

i generates at most O(mn) differ-

ent label vectors on the m inputs. Thus Hi generates at most O(m3n) label vectors in total. To

pseudo-shatter m inputs, we need O(m3n) ≥ 2m, which implies m = O(n log n).

We now define sub-classes {Hk
i }k, each indexed by k ∈ [m + 1]2(n−1). For each dimension

j ∈ [n] \ {i}, we sort the m inputs by their j-th coordinates non-decreasingly, and use π(j, ·) to

denote the resulting permutation over {1, 2, . . . ,m}: formally, v
(π(j,1))
j ≤ v

(π(j,2))
j ≤ · · · ≤ v

(π(j,m))
j .

For each function hvi,σ(·), for each j, we define two special positions:

kj,1 = max
{
0,
{
k : σj(v

(π(j,k))
j ) < bi

}}
,

kj,2 = min
{
m+ 1,

{
k : σj(v

(π(j,k))
j ) > bi

}}
.

These two positions are well defined because σj(·) is monotone. By definition, if kj,1 < kj,2 − 1,

then for any k such that kj,1 < k < kj,2, we must have σj(v
(π(j,k))
j ) = bi. We let a function hvi,σ(·)

belong to the sub-class Hk
i where the index k is (kj,1, kj,2)j∈[n]\{i}. The number of sub-classes is

the number of indices, which is bounded by (m+ 1)2(n−1).
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We now show that the functions within a sub-class Hk
i give rise to at most (m + 1)n label

vectors on the m inputs. Let us focus on one such class with index k. On the k-th input v
(k)
−i , a

function’s membership in Hk
i suffices to specify whether bidder i is a winner on this input, and,

if so, the number of other bidders winning at a tie. Therefore, the class index k determines a

mapping c : [m] → {0, 1, . . . , n}, with c(k) > 0 meaning bidder i is a winner on input v
(k)
−i at a tie

with c(k)−1 other bidders, and c(k) = 0 meaning bidder i is a loser on input v
(k)
−i . Then, the output

of a function hvi,σ(·) ∈ Hk
i on input v

(k)
−i is vi−fi(bi)

c(k) − gi(bi) if c(k) > 0 and −gi(bi) otherwise. The

same utility is output on two inputs v
(k)
−i and v

(k′)
−i whenever c(k) = c(k′). Consider the set S ⊆ [m]

of inputs that are mapped to one integer by c, and fix any |S| witnesses. By varying the function

in the subclass Hk
i , we can generate at most |S|+ 1 ≤ m+ 1 patterns of labels on the input set S,

because we are comparing the same utility with |S| witnesses. The label vector for the entire input
set [m] is the concatenation of these patterns of labels. Since the image of c has n+1 integers, and

there are at most (m+ 1)n+1 label vectors.

To conclude, the total number of label vectors generated by Hi =
⋃

kHk
i is at most

(m+ 1)2(n−1)(m+ 1)n+1 ≤ (m+ 1)3n.

To pseudo-shatter m inputs, we need (m+ 1)3n ≥ 2m, which implies m = O(n log n).

3.2 Lower Bound of Sample Complexity of Utility Estimation

We give an information-theoretic lower bound on the number of samples needed for any algorithm

to estimate utilities over monotone strategies in a first-price auction. The lower bound matches our

upper bound up to polylogarithmic factors.

Theorem 3.9. For any ε < 1
4000 , δ < 1

20 , there is a family of product value distributions for

which no algorithm can (ε, δ)-estimate utilities over the set of all monotone bidding strategies with

m ≤ 1
4×108

· n
ε2

samples.

The proof of Theorem 3.9 is in Appendix A. As a sketch, the product value distributions we

construct encode length n − 1 binary strings by having a slightly unfair Bernoulli distribution for

each bidder, the bias shrinking as n grows large. We then show that, if with a few samples a

learning algorithm can estimate utilities for all monotone bidding strategies, then there must exist

two product value distributions from the family that differ at only one coordinate, and yet they can

be told apart by the learning algorithm. This must violate the well-known information-theoretic

lower bound for distinguishing two distributions [Man11].

4 Sample Complexity of Learning BCE

This section studies how to learn BCEs using samples from the value distribution D.
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4.1 Estimating Utility by Empirical Product Distributions

Section 3.1 shows that the empirical distribution estimator approximates interim utilities with high

probability. However, this does not immediately imply that the auction on the empirical distri-

bution is a close approximation to the auction on the original distribution D. This is because

the empirical distribution over samples is correlated — the values v(j) = (v
(j)
1 , . . . , v

(j)
n ) are drawn

as a vector, instead of independently. The equilibria (either BCE or BNE) with respect to this

correlated empirical distribution do not correspond to the equilibria on the original product distri-

bution D. Therefore, it is desirable that utilities can also be estimated on a product distribution

arising from the samples, where each bidder’s value is independently drawn, uniformly from the m

samples of her value. We show that this can indeed be done, without a substantial increase in the

sample complexity. The key technical step, Lemma 4.3, is a reduction from learning on empirical

distribution to learning on empirical product distribution.

Definition 4.1. Given samples x(1), . . . ,x(m) from a product distribution D =
∏n

i=1Di, let Ei be

the uniform distribution over {x(1)i , . . . , x
(m)
i }. The empirical product distribution is the product

distribution E =
∏n

i=1Ei.

Definition 4.2. For ε > 0, δ ∈ (0, 1), a class of functions H :
∏n

i=1 Ti → R is (ε, δ)-uniformly

convergent on product distribution with sample complexity M if for any m ≥ M , for any product

distribution D on
∏n

i=1 Ti, if x
(1), . . . ,x(m) are i.i.d. samples from D, with probability at least 1−δ,

for every h ∈ H, ∣∣Ex∼D [h(x)]− Ex∼E [h(x)]
∣∣ < ε,

where E =
∏n

i=1Ei is the empirical product distribution.

Lemma 4.3. Let H be a class of functions from a product space T =
∏n

i=1 Ti to [0, H]. If H is

(ε, δ)-uniformly convergent with sample complexity m(ε, δ), then H is
(
2ε, Hδ

ε

)
-uniformly convergent

on product distribution with sample complexity m(ε, δ). In other words, H is (ε′, δ′)-uniformly

convergent with sample complexity m( ε
′

2 ,
δ′ε′

2H ).

Lemma 4.3 is closely related to a concentration inequality by [DHP16], who show that for any single

function h : T → [0, H], the expectation of h on the empirical product distribution E is close to its

expectation on the original distribution D with high probability. Our lemma generalizes [DHP16]

to the simultaneous concentration for a family of functions, and seems more handy for applications

such as ours. We believe Lemma 4.3 is of broader interest beyond the learnability of equilibrium

in auctions; it might be useful for the study of sample complexity for other stochastic optimization

problems with multiple independently distributed random variables, such as prophet inequalities

and Pandora’s box problem [GHTZ21]. In fact, the preliminary version of our work [FL20] uses

Lemma 4.3 to derive the sample complexity for the Pandora’s Box problem.

Proof of Lemma 4.3. Write the m samples S = {x1, . . . ,xm} from D as an m × n matrix (xji ),

where each row j ∈ [m] represents a sample xj , and each column i ∈ [n] consists of the m values
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sampled from Di. Then, we draw n permutations π1, ..., πn of [m] = {1, . . . ,m} independently and

uniformly at random, and permute the m elements in column i by πi. Regard each new row j as a

new sample, denoted by x̃j = (x
π1(j)
1 , x

π2(j)
2 , ..., x

πn(j)
n ). Given π1, . . . , πn, the “permuted samples”

{x̃1, . . . , x̃m} have the same distributions as m i.i.d. random draws from D.

For h ∈ H, let ph = Ex∼D[h(x)]. By the definition of (ε, δ)-uniform convergence (not on product

distribution),

PrS,π

∃h ∈ H,
∣∣∣ph − 1

m

m∑
j=1

h(x̃j)
∣∣∣ ≥ ε

 ≤ δ. (9)

For a set of fixed samples S = (x1, . . . ,xm), recall that Ei is the uniform distribution over

{x1i , . . . , xmi }, and E =
∏n

i=1Ei. We show that the expected value of h on E satisfies Ex∼E [h(x)] =

Eπ[
1
m

∑m
j=1 h(x̃

j)]. This is because

Eπ

[
1

m

m∑
i=1

h(x̃j)

]
=

1

m

m∑
j=1

Eπ

[
h(x̃j)

]
=

1

m

m∑
j=1

∑
(k1,...,kn)∈[m]n

h(xk11 , . . . , xknn ) · Prπ [π1(j) = k1, . . . , πn(j) = kn]

=
1

m

m∑
j=1

∑
(k1,...,kn)∈[m]n

h(xk11 , . . . , xknn ) · 1

mn

=
1

mn

∑
(k1,...,kn)∈[m]n

h(xk11 , . . . , xknn )

= Ex∼E [h(x)] .

Thus,

∣∣ph − Ex∼E [h(x)]
∣∣ =

∣∣∣∣∣∣ph − Eπ

 1

m

m∑
j=1

h(x̃j)

∣∣∣∣∣∣
≤ Eπ

∣∣∣ph − 1

m

m∑
j=1

h(x̃j)
∣∣∣


≤ Prπ

∣∣∣ph − 1

m

m∑
j=1

h(x̃j)
∣∣∣ ≥ ε

 ·H

+

1− Prπ

∣∣∣ph − 1

m

m∑
j=1

h(x̃j)
∣∣∣ ≥ ε

 · ε

≤ Prπ [Bad(h, π,S)] ·H + ε,
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where we define event

Bad(h, π,S) = I

∣∣∣ph − 1

m

m∑
j=1

h(x̃j)
∣∣∣ ≥ ε

 .

We note that, whenever
∣∣ph − Ev∼E [h(v)]

∣∣ ≥ 2ε, we have Prπ[Bad(h, π,S)] ≥ ε
H .

Finally, consider the random draw of samples S ∼ D,

PrS

[
∃h ∈ H,

∣∣ph − Ev∼E [h(v)]
∣∣ ≥ 2ε

]
≤ PrS

[
∃h ∈ H, Prπ [Bad(h, π,S)] ≥

ε

H

]
≤ PrS

[
Prπ [∃h ∈ H, Bad(h, π,S) holds] ≥ ε

H

]
≤ H

ε
ES

[
Prπ [∃h ∈ H, Bad(h, π,S) holds]

]
by Markov inequality

=
H

ε
PrS,π

[
∃h ∈ H, Bad(h, π,S) holds

]
≤ Hδ

ε
by (9).

Combining Theorem 3.4 with Lemma 4.3, we derive a result of utility estimation by empirical

product distribution.

Definition 4.4. The empirical product distribution estimator Empp estimates interim utilities of

a bidding strategy on the empirical product distribution E =
∏n

i=1Ei. Formally, for bidder i with

value vi, for bidding strategy profile σ, Empp(S, i, vi,σ) := Ev−i∼E−i [Ui(vi, σi(vi),σ−i(v−i))].

Theorem 4.5 (Utility estimation by empirical product distribution). Suppose Ti ⊆ [0, H]. Let D

be a product distribution on
∏n

i=1 Ti. For any ε > 0, δ ∈ (0, 1), there is

M = O

(
H2

ε2

[
n log n log

(
H

ε

)
+ log

(n
δ

)])
, (10)

such that for any m ≥ M , the empirical product distribution estimator Empp (ε, δ)-estimates with

m samples the utilities over the set of all monotone bidding strategies.

4.2 Learning Equilibrium from Samples

We are now ready to present our results for learning equilibria (BCE and BNE) using samples from

the value distribution D. By Theorem 4.5, utilities of the bidders on D can be approximated by

the utilities on the empirical product distribution E, therefore the auctions on the two distributions

share the same set of approximate equilibria:

Theorem 4.6 (Learning BCE from samples). Suppose Ti ⊆ [0, H] and D is a product distribution

on
∏n

i=1 Ti. For any ε, ε′ > 0, δ ∈ (0, 1), by drawing m ≥ (10) samples from D, with probability at
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least 1− δ, we have: Any monotone ε′-BCE Q on the empirical product distribution E =
∏n

i=1Ei

is a monotone (ε′ + 2ε)-BCE on D. Conversely, any monotone ε′-BCE Q on D is a monotone

(ε′ + 2ε)-BCE on E. Formally:

BCE(E, ε′) ⊆ BCE(D, ε′ + 2ε) and BCE(D, ε′) ⊆ BCE(E, ε′ + 2ε).

Proof. We will prove BCE(E, ε′) ⊆ BCE(D, ε′ + 2ε). The other direction is analogous. According

to Theorem 4.5, for any bidder i with value vi and bid bi, for any monotone strategies σ−i of other

bidders, bidder i’s interim utilities on distributions D and E satisfy:∣∣∣∣Ev−i∼D−i

[
Ui(vi, bi,σ−i(v−i))

]
− Ev−i∼E−i

[
Ui(vi, bi,σ−i(v−i))

]∣∣∣∣ ≤ ε. (11)

Let Q be any monotone ε′-BNE Q on E. By Definition 2.2, bidder i’s utility gain by deviating

according to deviation function ϕi satisfies

Eσ∼Q

[
Ev−i∼E−i

[
Ui(vi, ϕi(σi, vi),σ−i(v−i))− Ui(vi, σi(vi),σ−i(v−i))

]]
≤ ε′.

Applying (11) to above, we obtain

Eσ∼Q

[
Ev−i∼D−i

[
Ui(vi, ϕi(σi, vi),σ−i(v−i))− Ui(vi, σi(vi),σ−i(v−i))

]]
≤ ε′ + 2ε,

which implies that Q is an (ε′ + 2ε)-BCE on D.

The main implication of Theorem 4.6 is the following: if a mediator wants to coordinate the

bidders in a non-truthful auction (such as first-price auction) in an incentive-compatible way, but

does not know the bidders’ value distribution, the mediator can still achieve that by computing

an approximate correlated equilibrium for the bidders using samples from the distribution. Theo-

rem 4.6 characterizes the number of samples needed. It is almost linear in the number of bidders

n and polynomial in the target approximation accuracy ε, which is a statistically moderate sample

complexity.

A similar conclusion also holds for BNEs:

Theorem 4.7 (Learning BNE from samples). Under the same condition as Theorem 4.6,

BNE(E, ε′) ⊆ BNE(D, ε′ + 2ε) and BNE(D, ε′) ⊆ BNE(E, ε′ + 2ε).

Given some recent progress on the computation of BNE in first-price auctions on discrete dis-

tributions [WSZ20, CP23], we present an interesting corollary of Theorem 4.7: if there exists an

algorithm that can compute BNE for a first-price auction on discrete value distributions, then there

also exists an algorithm that can compute approximate BNE on any distributions, by simply sam-

pling from the distribution and running the former algorithm on the empirical product distribution
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(which is discrete).

Corollary 4.8. If there exists an algorithm that computes monotone ε′-BNE for the first-price

auction on any discrete product value distributions D =
∏n

i=1Di, then there exists a sample-

access algorithm that computes (ε′+ε)-BNE for the first-price auction on any product distributions

F =
∏n

i=1 Fi with high probability. If the running time of the former algorithm is polynomial in 1
ε′

and the support size of each discrete Di, then the running time of the latter algorithm is poly(1ε ,
1
ε′ ),

which does not depend on the support size of Fi (and Fi can be continuous).

5 Discussion

In this work, we obtained the first sample complexity result for learning strategic-form Bayesian

correlated equilibria in non-truthful auctions such as first-price and all-pay auctions. En route, we

showed that bidders’ expected utilities can be estimated using a moderate amount of value samples

for all monotone bidding strategies. Such a moderate sample complexity suggests that learning

to coordinate bidders in non-truthful auctions is statistically feasible. Our work can be a starting

point for several future research directions:

• Other types of BCE. The learnability of strategic-form BCE in non-truthful auctions relies on

its simple form: recommending monotone joint bidding strategies to bidders without eliciting

bidders’ values. Other types of BCEs, such as a communication equilibrium which includes

an elicitation phase and a recommendation phase [Mye82, For06], need not have a monotone

structure, and we do not know whether they are efficiently learnable.

• Correlated value distribution. Our results also depend on bidders’ values being drawn inde-

pendently. With correlated values, the conditional distribution of opponents’ values changes

with a bidder’s own value, and any näıve utility estimation algorithm needs a number of sam-

ples that grows linearly with the size of a bidder’s value space. It is interesting whether there

are meaningful tractable middle grounds between independent distributions and arbitrary

correlated distributions.

• Multi-item auctions and general games. Monotonicity is a natural assumption on bidding

strategies in a single-item auction, but it does not generalize to multi-parameter settings,

where equilibria are difficult to characterize. It is an interesting question whether our results

can be generalized to multi-item auctions, such as simultaneous first-price auctions, via more

general, lossless structural assumptions on the bidding strategies. One can ask an even

more general question: when can BCE be learned from type samples in general incomplete-

information games?
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A Proof of Theorem 3.9

Fixing ε > 0, fixing c1 = 2000, we first define two value distributions. Let D+ be a distribution

supported on {0, 1}, and for v ∼ D+, Pr[v = 0] = 1 − 1+c1ε
n , and Pr[v = 1] = 1+c1ε

n . Similarly

define D−: for v ∼ D−, Pr[v = 0] = 1− 1−c1ε
n , and Pr[v = 1] = 1−c1ε

n .

Let KL(D+;D−) denote the KL-divergence between the two distributions.

Claim A.1. KL(D+;D−) = O( ε
2

n ).
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Proof. By definition,

KL(D+;D−) =
1 + c1ε

n
ln

(
1 + c1ε

1− c1ε

)
+

n− 1− c1ε

n
ln

(
n− 1− c1ε

n− 1 + c1ε

)
=

1

n
ln

(
1 + c1ε

1− c1ε
·
(1− c1ε

n−1)
n−1

(1 + c1ε
n−1)

n−1

)
+

c1ε

n
ln

(
1 + c1ε

1− c1ε
·
1 + c1ε

n−1

1− c1ε
n−1

)

≤ 1

n
ln

1 + c1ε

1− c1ε
·

(
1− c1ε

n−1

)n−1

1 + c1ε

+
2c1ε

n
ln

(
1 +

2c1ε

1− c1ε

)

≤ 1

n
ln

(
1− c1ε+

1
2(c1ε)

2

1− c1ε

)
+

8c21ε
2

n

≤ 10c21ε
2

n
.

In the last two inequalities we used c1ε <
1
2 and ln(1 + x) ≤ 1 + x for all x > 0.

It is well known that an upper bound on KL-divergence implies an information-theoretic lower

bound on the number of samples to distinguish two distributions (e.g., [Man11]).

Corollary A.2. Given t i.i.d. samples from D+ or D−, if t ≤ n
80c21ε

2 , no algorithm H that maps

samples to {D+, D−} can do the following: when the samples are from D+, H outputs D+ with

probability at least 2
3 , and if the samples are from D−, H outputs D− with probability at least 2

3 .

We now construct product distributions using D+ and D−. For any S ⊆ [n− 1], define product

distribution DS to be
∏

iDi where Di = D+ if i ∈ S, and Di = D− if i ∈ [n − 1] \ S, and Fn is

a point mass on value 1. For any j ∈ [n − 1] and S ⊆ [n − 1], distinguishing DS∪{j} and DS\{j}

by samples from the product distribution is no easier than distinguishing D+ and D−, because the

coordinates of the samples not from Dj contains no information about Dj .

Corollary A.3. For any j ∈ [n − 1] and S ⊆ [n − 1], given t i.i.d. samples from DS∪{j} or

DS\{j}, if t ≤ n
80c21ε

2 , no algorithm H can do the following: when the samples are from DS∪{j}, H
outputs DS∪{j} with probability at least 2

3 , and when the samples are from DS\{j}, H outputs DS\{j}

with probability at least 2
3 .

We now use Corollary A.3 to derive an information-theoretic lower bound on estimating utilities

for monotone bidding strategies, for distributions in {DS}S⊆[n].

Proof of Theorem 3.9. Without loss of generality, assume n is odd. Let S be an arbitrary subset

of [n−1] of size either ⌊n/2⌋ or ⌈n/2⌉. We focus on the interim utility of bidder n with value 1 and

bidding 1
2 . Denote this bidding strategy by σn. The other bidders may adopt one of two bidding

strategies. One of them is σ+: σ+(0) = 0 and σ+(1) = 1
2 + η for sufficiently small η > 0. The

other bidding strategy σ−(·) maps all values to 0. For T ⊆ [n− 1], let σT be the profile of bidding

strategies where σi = σ+ for bidder i ∈ T , and σi = σ− for bidder i ∈ [n− 1] \ T .
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For the distribution DS , the interim utility of bidder n is

un

(
1,

1

2
,σT

)
1

2
Pr

[
max
i∈T

vi = 0

]
=

1

2

(
1− 1 + c1ε

n

)|S∩T |(
1− 1− c1ε

n

)|T\S|

=
1

2

(
1− 1 + c1ε

n

)|T |(n− 1 + c1ε

n− 1− c1ε

)|T\S|
.

Therefore, for T, T ′ ⊆ [n− 1] with |T | = |T ′|,

un(1,
1
2 ,σT )

un(1,
1
2 ,σT ′)

=

(
1 +

2c1ε/(n− 1)

1− c1ε
n−1

)|T\S|−|T ′\S|

≥ 1 +
2c1ε

n− 1
· (|T \ S| − |T ′ \ S|);

Suppose |T \ S| ≥ |T ′ \ S| and |T | = |T ′| ≥ ⌊n2 ⌋, then

un

(
1,

1

2
,σT

)
− un

(
1,

1

2
,σT ′

)
(12)

≥ (|T \ S| − |T ′ \ S|) · 2c1ε

n− 1
· un

(
1,

1

2
,σT ′

)
≥ (|T \ S| − |T ′ \ S|) · 2c1ε

n− 1
· 1

8e2
, (13)

where the last inequality is because un(1,
1
2 ,σT ′) ≥ 1

2(1−
2
n)

n = 1
2 [(1−

2
n)

n
2 ]2 ≥ 1

2(
1
2e)

2 = 1
8e2

.

Now suppose an algorithm A (ε, δ)-estimates the utilities of all monotone bidding strategies

with t ≤ n
80c21ε

2 samples S. Define H : Rn×t
+ × N → 2[n−1] be a function that outputs, among all

T ⊆ [n − 1] of size k, the one that maximizes bidder n’s utility when other bidders bid according

to strategy σT . Formally,

H(S, k) = argmax
T⊆[n−1],|T |=k

A (S, n, 1, (σT , σn)) ,

By Definition 3.1, for any S with |S| = ⌊n/2⌋, for samples drawn from DS , with probability at

least 1− δ,

A(S, n, 1, (σ[n−1]\S , σn)) ≥ un

(
1,

1

2
,σ[n−1]\S

)
− ε;

and for any T ⊆ [n− 1] with |T | = ⌈n/2⌉,

A(S, n, 1, (σT , σn)) ≤ un

(
1,

1

2
,σT

)
+ ε.
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Therefore, for W = H(S, ⌈n/2⌉),

un

(
1,

1

2
,σW

)
≥ un

(
1,

1

2
,σ[n−1]\S

)
− 2ε.

Since |W | = [n− 1] \ S = ⌈n/2⌉, by (13),(
⌈n
2
⌉ − |W \ S|

)
· c1ε

(n− 1)4e2
≤ 2ε.

So

|W ∩ S| ≤ (n− 1) · 8e
2

c1
.

In other words, with probability at least 1 − δ, H(S, ⌈n/2⌉) is the complement of S except for at

most 8e2

c1
fraction of the coordinates in [n− 1].

Similarly, for S of cardinality ⌈n/2⌉,

|H(S, ⌈n/2⌉) ∩ S| ≤ (n− 1) · 8e
2

c1
+ 1.

Take c2 to be 8e2

c1
. We have c2 < 1

20 . For all large enough n and all S of size ⌊n/2⌋ or ⌈n/2⌉, with
probability at least 1 − δ, H(S, ⌈n/2⌉) correctly outputs the elements not in S with an exception

of at most c2 fraction of coordinates.

Let S be the set of all subsets of [n − 1] of size either ⌈n/2⌉ or ⌊n/2⌋. Consider any S ∈ S.

Let θ(S) ⊆ [n − 1] denote the set of coordinates whose memberships in S are correctly predicted

by H(S, ⌈n/2⌉) with probability at least 2/3; that is, i ∈ θ(S) iff with probability at least 2/3,

H(S, ⌈n/2⌉) is correct about whether i ∈ S. Let the cardinality of |θ(S)| be z(n − 1). Suppose

we draw coordinate i uniformly at random from [n− 1], and independently draw t samples S from

DS , then the probability that H(S, ⌈n/2⌉) is correct about whether i ∈ S satisfies:

Pr
i,S

[
H(S, ⌈n/2⌉) is correct about whether i ∈ S

]
≥ (1− c2)(1− δ) ≥ 0.9,

and

Pr
i,S

[
H(S, ⌈n/2⌉) is correct about whether i ∈ S

]
≤ Pri [i ∈ θ(S)] · 1 + Pri [i /∈ θ(S)] · 2

3

= z · 1 + (1− z) · 2
3
,

which implies z > 0.6. If a pair of sets S and S′ differ in only one coordinate i, and i ∈ θ(S)∩θ(S′),

then H(·) serves as an algorithm that tells apart DS and DS′ , contradicting Corollary A.3. We
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now show, with a counting argument, that such a pair of S and S′ must exist.

Since for each S ∈ S, |θ(S)| ≥ 0.6(n− 1), there exists a coordinate i ∈ [n− 1] and T ⊆ S, with

|T | ≥ 0.6|S|, such that for each S ∈ T , i ∈ θ(S). But S can be decomposed into |S|/2 pairs of sets,

such that within each pair, the two sets differ by one in size, and precisely one of them contains

coordinate i. Therefore among these pairs there must exist one (S, S′) with S, S′ ∈ T , i.e., i ∈ θ(S)

and i ∈ θ(S′). Using H, which is induced by A, we can tell apart DS and DS′ with probability at

least 2/3, which is a contradiction to Corollary A.3. This completes the proof of Theorem 3.9.

27


	Introduction
	Related Works

	Preliminary: Auctions, BNE, and BCE
	Sample Complexity of Estimating Utility
	Upper Bound of Sample Complexity of Utility Estimation
	Pseudo-Dimension and the Proof of Theorem 3.4

	Lower Bound of Sample Complexity of Utility Estimation

	Sample Complexity of Learning BCE
	Estimating Utility by Empirical Product Distributions
	Learning Equilibrium from Samples

	Discussion
	Proof of Theorem 3.9

