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We study competition among multiple contest designers in a general model. The goal of each 
contest designer is to maximize the sum of efforts of the contestants participating in their 
contest. Assuming symmetric contestants, our main result shows that the optimal contests in 
the monopolistic setting (i.e., those that maximize the sum of efforts in a model with a single 
contest designer) form an equilibrium in the model with competition. Under a very natural 
assumption, these contests are dominant, and the equilibrium that they form is unique. Moreover, 
the equilibria with the optimal contests are Pareto-optimal even when other equilibria emerge. In 
many natural cases, they also maximize the social welfare. Additional examples show that, with 
further generalizations of our model, optimal contests no longer prevail. Our results therefore 
highlight and clarify the borderline between settings in which optimal contests prevail and do not 
prevail.

1. Introduction

Many important economic and social interactions may be viewed as contests. The designer aims to maximize her abstract utility 
(e.g. workers’ productivity, sales competitions, innovative ideas, information from contestants) by forming a contest, and contestants 
exert effort in hopes of winning a prize. The design of optimal contests is by now well understood in the monopolistic (single-contest) 
setting. For example, the contest designer may consider designing the “prize structure”, splitting the total prize into multiple smaller 
prizes to reward multiple contestants. The literature provides a good understanding of the optimal prize structure. In many cases, a 
winner-takes-all contest is optimal in terms of maximizing either the sum of contestants’ efforts or the single maximal effort (e.g. Barut 
and Kovenock, 1998; Kalra and Shi, 2001; Moldovanu and Sela, 2001; Terwiesch and Xu, 2008; Chawla et al., 2019).

While most of the existing literature on contest design focuses on a monopolistic contest with an exogenously given set of con-

testants, in reality, many times, there are multiple contests on a market and these contests must compete to attract contestants. This 
induces a participation vs. effort trade-off. Although the optimal contest in the single-contest setting induces maximal effort exertion 
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from participating contestants, contestants are at the same time discouraged from choosing the more demanding contests. To attract 
contestants, a contest designer should design lucrative, easy contests that leave a large fraction of the total surplus to contestants. 
One might expect that a contest designer should carefully balance these two contradicting aspects (participation vs. effort extraction) 
when competing with other contests.

Previous literature has noticed the aforementioned trade-off but only few models formally studied it, most notably, Azmat and 
Möller (2009) and Stouras et al. (2020); see Section 1.2 for details.1 Surprisingly, those papers suggested that either participation or 
effort may dominate the other, depending on the exact assumptions underlying their models. However, a clear-cut understanding of 
the borderline between the two cases is still out of sight as many simplifying assumptions were previously made and it is not clear 
which of these assumptions are necessary to tip the trade-off in one direction. The current paper therefore aims to provide a more 
general framework and analysis of competition among multiple contest designers. Our analysis suggests that a contestant-symmetric 
model is a key factor leading to the domination of effort over participation, even if allowing asymmetric contest designers and a 
rather general contest design space.

As two concrete applications, we consider cases where the designer may be able to either (i) influence the accuracy with which 
contestants’ efforts are observed (or the level of noise in the contest), and/or (ii) determine the prize structure. An example for (i) is 
mentioned by Wang (2010): “the International Table Tennis Federation (ITTF) changed the points scoring system for international matches 
from first to 21 to first to 11 in 2000. One reason for doing this is to reduce the accuracy level of the matches”.2 Examples for increasing 
effort observability include competitive ice-skating, soccer, chess (Hjort, 1994; Brams et al., 2023; Brams and Ismail, 2021). We give 
further details in Section vii of the online appendix. A realistic example for (ii) is the popular data-science contests platform, Kaggle, 
which allows contest designer to split the total prize to multiple smaller prizes (so that, e.g., second and third places will also receive 
a monetary award).3 Our results give clear-cut implications for case (i) and meaningful but somewhat weaker implications for (ii); 
see further details below.

1.1. Overview of results and techniques

At a high level, our contest competition model is composed of three phases. In the first phase, every contest designer 𝑖 chooses 
(and commits to) a contest from some general class of anonymous contests 𝑖 available to 𝑖. In the second step, after seeing the 
contests chosen by the designers, each contestant chooses (possibly in a random way) one contest to participate in. Finally, in each 
contest, contestants invest efforts by playing a symmetric Nash equilibrium (which previous literature has shown to exist; see details 
in Section 2). Designers aim to maximize the sum of efforts exerted in their own contests and contestants aim to maximize the reward 
(or prize; we use these two words interchangeably) they receive minus their effort.

We identify two properties of contests and show as our first main result that if every contest designer chooses a contest that satisfies 
these two properties then we are at an equilibrium. The first property is called Monotonically Decreasing Utility (MDU), which simply 
says that a contestant’s symmetric-equilibrium utility in the single contest game decreases as the number of contestants increases. 
The second property, called Maximal Rent Dissipation (MRD), formally defines the optimality of a contest – in the monopolistic case 
– among all contests in 𝑖. A contest 𝐶𝑖 ∈ 𝑖 satisfies MRD if, for any other contest 𝐶 ′

𝑖
∈ 𝑖 and for any number of contestants 𝑘, a 

contestant’s symmetric-equilibrium utility in the single contest 𝐶𝑖 with 𝑘 contestants is not larger than her symmetric-equilibrium 
utility in 𝐶 ′

𝑖
with 𝑘 contestants. Thus, 𝐶𝑖 minimizes the contestants’ utilities and therefore maximizes the utility of the contest designer, 

among all contests available to the designer. In this sense, 𝐶𝑖 is optimal for designer 𝑖 in the single contest game. One example of 
an MRD contest is the all-pay auction. This is an especially useful example as an all-pay auction leaves zero expected utility to the 
contestants. It therefore satisfies the MRD property relative to any arbitrary set 𝑖. We term such contests Full Rent Dissipation (FRD); 
see a discussion of this in Section 2. As far as we know, the equilibrium properties of competing all-pay auctions were previously 
discussed only in the limited model of Azmat and Möller (2009). MRD abstracts away from the specific contest format, highlighting 
the importance of rent dissipation to the equilibrium properties in the setting of competing contests. Furthermore, MDU and MRD 
are almost without loss of generality since we show that, given any existing set of contests 𝑖 , one can always construct an additional 
contest which satisfies MDU and MRD by combining contests in 𝑖 (see details in Section 2.5).

Main results Our first main result (Theorem 3.1) is that contests satisfying both MDU and MRD form an equilibrium of the con-

test competition game, and that, in the case where designers can choose only MDU contests, MRD contests are weakly dominant. 
In the latter case, MRD contests are the only possible contests that emerge in equilibria (Theorem 3.3). If designers can choose 
non-MDU contests, non-MRD contests may emerge as additional equilibria (Example 3.2) on top of the equilibria that MRD con-

tests form. However, we show that even when non-MRD contests form equilibria, choosing MRD contests is a Pareto-optimal 
outcome for contest designers (Theorem 3.7), maintaining the attractiveness of MRD contests to contest designers. In summary, 
effort indeed dominates participation in the aforementioned trade-off for the competing designers. We additionally show that MRD 
contests are welfare optimal in many natural cases (although not always; see Section 5). These conclusions hold regardless of the 

1 There is also a conceptually related literature on competing mechanisms. See a discussion in Section 1.2.3 on this literature and the fundamental differences from 
models of competing contests.

2 “The rationale for this is simple. The domination of China meant that there was little incentive for the other teams. Reducing the accuracy level increases the chance that a 
team other than China will win, thus inducing more effort from the other teams. This increased competition could in turn result in greater effort from the Chinese team” (Wang, 
2010).

3 For example, AMEX ran a contest on Kaggle during May to August 2022 with a total prize of 100 K USD that was divided to four prizes for the first four places.
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number of designers, the prizes they offer, and the classes of contests they can choose from, subject to the assumptions detailed 
below.

Important modeling assumptions Our model includes five important assumptions: (a) symmetric contestants who play symmetric 
strategies in equilibrium, (b) linear costs of effort, (c) complete information, (d) the prize is fully allocated, and (e) the total prize is 
exogenous. These assumptions are standard in the literature as we discuss in the literature review below. Furthermore, throughout 
the paper we examine the necessity of these assumptions to our results. We next give a high-level overview.

Most importantly, we assume that contestants are symmetric, in the sense that they have a symmetric cost of effort and that they 
play a symmetric equilibrium when choosing contests to participate in as well as investing efforts within their chosen contests. We 
give examples showing that with asymmetric contestants our results do not hold: it is no longer true that the optimal contests in the 
monopolistic setting continue to be optimal when there is competition among contests. Second, our analysis relies on the observation 
that the way we model any single contest – which is one of the standard models of single contests in the literature – implies that 
the social welfare generated by a contest is fixed and independent of effort: as long as 𝑘 ≥ 1 contestants participate in a contest, the 
social welfare is simply the total prize offered by the designer (the efforts cancel out in the social welfare summation). This is an 
implication of assuming a linear and symmetric cost of effort and assuming that the prize is valued in the same way by all contestants. 
The assumption that the prize is valued the same way by all contestants is natural in our setting, since the prize is monetary, but 
less natural in incomplete-information auction-like settings where the reward is a non-monetary object. For this reason, our results 
may not necessarily carry over to such private-values settings. Third, we assume that the prize is fully allocated to the contestants. 
In particular, if only one contestant shows up in a contest, that contestant receives the total prize for free. This assumption is natural 
in many types of contests, e.g., in R&D contests, in crowd-sourcing websites, in rewarding athletes, musicians, and actors, for their 
performance. Section 6 gives a more detailed discussion of our assumptions and their implications on our results, including the above 
issues. Our results therefore highlight and clarify the borderline between settings in which optimal contests prevail and settings in 
which this is not the case.

Intuition To see why the above assumptions imply our first main result, that MRD contests are at equilibrium in our contest com-

petition game, consider the following reasoning. Suppose that designer 𝑖 switches from some MRD contest 𝐶𝑖 to a non-MRD contest 
𝐶 ′
𝑖
. We first argue that in the new equilibrium outcome the sum of contestants utilities in contest 𝑖 will weakly increase. This seems 

natural since 𝐶 ′
𝑖

extracts less surplus than 𝐶𝑖 from the contestants in the single contest game. However, we need to be careful here 
as we have two contradicting effects. On the one hand, for a fixed number of contestants, 𝐶 ′

𝑖
indeed leaves a larger surplus than 𝐶𝑖

to the contestants. On the other hand, this also implies that more contestants (in expectation) will choose to participate in contest 𝑖, 
decreasing the equilibrium utility of each contestant. Nevertheless, the fact that more contestants participate in contest 𝑖 implies that 
less contestants participate in any other contest 𝑗 ≠ 𝑖. Therefore, the sum of contestants utilities in contest 𝑗 increases since contest 𝑗
has MDU. In equilibrium, a contestant’s expected utility from choosing contest 𝑗 must be equal to her expected utility from choosing 
contest 𝑖. Thus, the sum of contestants equilibrium utilities will increase in all contests, including in contest 𝑖. This is a type of a 
spillover effect. Now, since the social welfare in contest 𝑖 is constant (irrespective of the contest chosen by 𝑖, as discussed above), 
the fact that the contestants’ utilities increase implies that the utility of contest designer 𝑖 decreases. Thus, the transition from 𝐶𝑖 to 
a non-MRD contest 𝐶 ′

𝑖
can only decrease 𝑖’s utility. To complete the picture, we provide examples showing that this conclusion does 

not hold if any of the above-mentioned assumptions is removed.

Of course, some details are overlooked by this high-level intuition. For example, strictly speaking, it is not true that the social 
welfare is constant, since with a certain probability no contestant shows up at contest 𝑖 and in this case the resulting social welfare 
at contest 𝑖 is zero. In addition, we also prove uniqueness and Pareto-optimality of equilibria outcomes with MRD contests. The full 
details, supporting examples, and further discussion are in Section 3 and Appendix B.

Applications We apply our general framework to competition among Tullock contests with varying prize structures. As corollaries, we 
obtain: (1) Choosing winner-takes-all contests, i.e., giving the entire reward to the winner, is an equilibrium for designers who can only 
adjust prize structures but not their observability of effort and/or quality, i.e., the Tullock parameter 𝜏 is exogenous (Corollary 4.3). 
(2) Choosing all-pay auctions is an equilibrium for designers who can only adjust observability but must choose winner-takes-all; 
in fact, we show that choosing any Tullock parameter 𝜏 ≥ 2 is an equilibrium (Corollary 4.2). (3) Choosing the winner-take-all 
contest with the largest possible observability is an equilibrium for designers that can adjust both prize structures and observability 
(Corollary 4.4).

1.2. Related literature

We review three strands of the literature. The first strand considers the optimality of contests in a monopolistic (single contest) 
setting, in terms of revenue for the designer, agent participation, etc. The second and third strands consider competition among 
contests and among mechanisms, respectively. The difference between these two strands is discussed. Our results are interesting in 
the way that they tie together the first two strands: We show that effort-maximizing contests (those that were identified in the first 
strand) are in an equilibrium in our competition model (that belongs to and follows the second strand). The takeaway message to a 
contest designer is that in case she is interested to maximize the sum of contestants’ efforts, introducing competition does not change 
her basic goal of extracting maximal effort from a fixed set of contestants.
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1.2.1. Optimal contests in the monopolistic setting

In the monopolistic setting, several works study optimal multiple-prize contest design intending to maximize the sum of efforts. 
Under different assumptions, most of these papers arrive at the same conclusion that the optimal contest is the winner-takes-all 
contest where the full prize is offered to the single contestant exerting the highest effort. For example, in all-pay auctions where 
contestants’ efforts are fully observable, Barut and Kovenock (1998); Moldovanu and Sela (2001) show that a winner-takes-all all-pay 
auction is optimal assuming contestants have either linear or concave cost functions (interestingly, for convex cost functions their 
results vary). An exception is Glazer and Hassin (1988) who show that the optimal contest should offer equal prizes to all players 
except for the player with the lowest effort if players value the prize money by a strictly concave utility function. We consider linear 
utilities and linear cost functions as in Barut and Kovenock (1998) so the winner-takes-all is optimal in the monopolistic setting. Our 
results therefore show that winner-takes-all is a Pareto-optimal equilibrium (and possibly dominant) for the contest designers in the 
competitive setting as well. When contestants’ efforts are not fully observable and their winning probabilities for different prizes are 
assumed to follow a Tullock success function, the optimal prize structure is once again a winner-takes-all (Clark and Riis, 1998). 
The winner-takes-all is also optimal in a stochastic-quality model (e.g., Kalra and Shi (2001); Ales et al. (2017)) where a contestant 
who exerts effort 𝑒𝑖 produces a submission with random quality 𝑄𝑖 = 𝑒𝑖 +𝑍𝑖 where 𝑍𝑖 follows some noise distribution, and Drugov 
and Ryvkin (2020) characterizes that this holds as long as the hazard-rate of the distribution is increasing. In this case, prizes are 
allocated based on the submission qualities. If the designer must offer a single prize, then the all-pay auction is optimal among all 
possible contests, as it induces full rent dissipation – contestants’ utilities are reduced to zero and their sum of efforts is maximized 
(Baye et al., 1996). A line of the literature including Schweinzer and Segev (2012); Baye et al. (1996); Alcalde and Dahm (2010); 
Ewerhart (2017) studies symmetric equilibria and rent dissipation in optimal contests. Our formal results, which analyze contests that 
admit symmetric equilibria and certain dissipation properties, have concrete applications thanks to the existence and characterization 
results provided in these papers. The models of the latter three papers assume, as we do, linear costs of effort, complete information, 
that the prize is fully allocated, and exogenous total prize.

1.2.2. Competition among contests

Azmat and Möller (2009) study a model very similar to ours including our assumptions (a) - (e) discussed above. They suggest 
that, for contest designers maximizing the sum of efforts, the effort aspect is always dominating, and hence a single prize should 
be offered. However, it is not clear how robust this conclusion really is, since their model is restricted in two main aspects. First, it 
assumes that all contests have the same total prize to offer.4 Second, and perhaps even more important, it restricts the choice of a 
contest and assumes that designers must choose a multiple-prize contest where contestants’ winning probabilities for each prize are 
determined by a Tullock success function that is exogenous and identical for all contest designers. We significantly generalize this 
model in several aspects including these two issues: we allow for arbitrary and non-identical total prizes and we allow for a general 
contest design space. An example to the latter is the possibility to endogenize the observability parameter of a Tullock contest, as we 
next discuss.

An important appeal of a Tullock contest as a model for winner-determination in real-life contests is that it captures the fact that 
the quality of a submission is not fully observed by the contest designer (in some settings one would imagine that even the effort 
itself is not fully observed). Therefore, the actual vector of efforts 𝑒1, ..., 𝑒𝑘 of the 𝑘 contestants in a certain contest (whether it is fully 
observed or not) cannot deterministically determine the winner, and winning is only probabilistic in the true efforts (Segev, 2020). 
The winning probability may be following a Tullock contest success function 𝑒𝜏

𝑖
∕(
∑𝑘

𝑗=1 𝑒
𝜏
𝑗
) using some parameter 𝜏 to capture such 

partial-observability by letting contestants with higher efforts win with higher probabilities (as 𝜏 increases, observability is better). 
With such a motivation, it seems that a contest designer always has the strategic option to artificially reduce her observability, e.g., 
using a Tullock contest success function with some parameter 𝜏′ < 𝜏 . Endogenizing the Tullock contest parameter was previously 
suggested in Michaels (1988); Nitzan (1994); Dasgupta and Nti (1998); Wang (2010); Polishchuk and Tonis (2013). In particular, 
in the tournament setting of O’keeffe et al. (1984), even given costless perfect monitoring, the optimal contest requires that effort 
be monitored imperfectly. Combining various prize structures with a limited choice of the parameter 𝜏 is a natural way to expand 
the set of possible contests to consider. This is not captured in previous models of competition among contests. Contest success 
functions may depend on the number of contestants in other complex ways and many additional examples of natural classes of 
contests exist (Corchón, 2007). Naturally, as the strategic flexibility of contest designers increases, existing outcomes may no longer 
be in equilibrium, and even if they do remain in equilibrium, additional more attractive equilibria might emerge. For example, a 
natural question is whether the strategic possibility to decrease observability implies that we see such a practice in reality. Our results 
in fact imply the opposite, that even if such a possibility exists, it is sub-optimal – a high-observability design is better.

DiPalantino and Vojnovic (2009) consider an incomplete information competition among contests. They focus on participation 
issues rather than on the strategic choices of contest designers, by assuming that all contests are all-pay. They explicitly character-

ize the relationship between contestants’ participation behavior and contests’ rewards, and find that rewards yield logarithmically 
diminishing returns with respect to participation levels. Körpeoğlu et al. (2017) consider an incomplete information contest model 
where contestants can participate in multiple contests, and contest designers use winner-takes-all contests while strategically choosing 
rewards to maximize the maximal submission quality minus reward. They show that, in several cases, contest designers benefit from 
contestants’ participation in multiple contests.

4 Their analysis seems to significantly rely on this assumption. It also formally assumes exactly two competing contests, although this aspect may be more easily 
generalized.
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Stouras et al. (2024) study a setting with two contest designers designing prize structures to maximize the quality of the single 
best solution submitted by participants in their contests minus the payment to the participants. Contestants are symmetric and have a 
convex cost-of-effort function. They show that contest designers will choose different prize structures in the competition setting and 
in the monopolistic setting. The difference between their results and ours stems from two different modeling assumptions: (i) their 
cost of effort is non-linear while ours is linear and (ii) the utility of a contest designer is different. In fact, Section iv in the online 
appendix demonstrates that the assumption of linear costs of effort is necessary for our results. It shows a counter example to our 
results where we change only the cost of effort assumption and keep all other assumptions the same. We note that our model is more 
general than Stouras et al. (2024) in other aspects: our model allows any number of contest designers and general contest design 
spaces.

Deng et al. (2022) study computational aspects of a parallel participation model similar to ours but under incomplete information. 
They show that for a designer, given knowledge of all other designers’ strategies, it is NP-hard to compute a best response, and 
show how to compute an approximately best response. When other designers’ strategies are unknown, they construct a constant-

ratio approximation of the worst-case best-response. They do not discuss equilibria outcomes in their model, while our complete-

information model admits equilibria that we specifically characterize and that are easily computable.

1.2.3. Competing mechanisms

The literature on competing mechanisms studies a game very similar to the one considered here: multiple sellers each post a 
mechanism, buyers observe all mechanisms, and then each choose one to participate in (or, in equilibrium, mix between mechanisms). 
The aggregate conclusion of this literature (e.g., McAfee (1993); Levin and Smith (1994); Peters and Severinov (1997); Peters (1997, 
2001); Albrecht et al. (2012)) is that competition induces more efficient outcomes and thus there is a contrast between the optimal 
mechanism in the monopolistic case (which is inefficient) versus the competition case (which is efficient). For example, Peters 
(2001) explicitly shows a trade-off between participation and surplus extraction, in his model. Despite the similarities between the 
competing mechanism game and our competing contest game, several fundamental differences in modeling assumptions explain why 
our conclusions significantly differ, as follows.

First, these classic results usually assume a “large market” with an infinite number of sellers, while we study a setting with a finite 
number of sellers (contest designers). Indeed, Burguet and Sákovics (1999); Pai (2009) studies a competing auction problem with 
a finite number of sellers and shows that, unlike the large market case, the sellers do not choose efficient auctions: they set strictly 
positive reservation prices and do not always allocate the good to the highest-value buyer. A related benefit of our discussion is that 
we can use standard game theoretic equilibrium notions, rather than specialized equilibria tailored for a large market that implies 
bounded rationality of the players, as in McAfee (1993); Peters and Severinov (1997).

Second, while the literature on competing mechanisms usually assumes incomplete information, we assume complete information 
and (most importantly) as a result all contestants have the same value for the reward which is the standard assumption for monetary 
rewards as is many times the case in contests. Hence, every contest is efficient as long as the reward is fully allocated. Although 
all efficient mechanisms are equivalent according to the celebrated “Revenue Equivalence Theorem”, not all efficient contests are 
equivalent: two contests that both fully allocate the reward may generate different profits to the contest designer if they allocate the 
reward in different ways – for example, a contest that allocates the reward to the contestant with the largest effort with a higher 
probability generates more profit to the contest designer. Specifically, in this paper we restrict contest designers to choose efficient 
contests (i.e., contests that fully allocate the reward) and study which efficient contests are chosen in equilibrium. It turns out that 
those are still the profit-maximizing ones as in the monopolistic (single-contest) setting.

Some papers in the competing mechanism literature study a complete-information model with a finite number of buyers and 
sellers (as we do), e.g., Burdett et al. (2001); Galenianos et al. (2011); Julien et al. (2002). They restrict attention to posted-price 
selling mechanisms, which are natural in their context but probably less natural for contests. In contrast, we allow for a much more 
general class of contests. Another notable difference between their model and ours is the treatment in case one buyer shows up to 
a certain mechanism/contest. Their posted price mechanism may not allocate the item to the buyer while we assume the efficient 
alternative, namely that in this case the contestant/buyer wins the prize/item and exerts no effort. While both assumptions are 
reasonable in their respective contexts, the contrast between our results and the results of Burdett et al. (2001); Galenianos et al. 
(2011) demonstrates the importance of this case (i.e., only a single contestant shows up). In particular, under our assumption that 
sellers give the item for free if exactly one buyer arrives, our main result would have the sellers charge the optimal monopolistic 
price when more than one buyer arrives. The result of Burdett et al. (2001), which is qualitatively different, explicitly describes the 
equilibrium posted price for any number of buyers and sellers and shows that it is always strictly lower than the optimal monopolistic 
price. The model of Galenianos et al. (2011) allows asymmetric sellers, as we do. They show that the equilibrium outcome of their 
competing mechanism game is not welfare maximizing (where the welfare is the sum of all sellers’ and buyers’ utilities) unless sellers 
are symmetric. In contrast, in our competing contest model, the equilibrium outcome is always welfare-maximizing in several natural 
cases even with asymmetric sellers (see Section 5 for details). This again demonstrates the importance of the modeling assumption 
regarding the case of a single contestant in a contest/mechanism. See additional discussion regarding these issues in Section v of the 
online appendix.
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2. Model and preliminaries

2.1. A single-contest game

A contest designer designs a contest among several contestants to maximize the sum of efforts exerted by the contestants in return 
for some reward to be divided among them according to some winning rule determined by the designer.

Formally, a contest 𝐶 is composed of a reward (or a total prize) 𝑅 and contest success functions (CSF) 𝒇 𝑘 ∶ ℝ𝑘
≥0 → [0,1]𝑘 for 

each number of contestants 𝑘 > 0.5 After observing the contest 𝐶 and the number of contestants 𝑘, the contestants exert efforts 
(𝑒1,… , 𝑒𝑘) ∈ℝ𝑘

≥0 to compete for the reward. Each contestant 𝓁 receives a fraction 𝑓𝑘𝓁 (𝑒1,… , 𝑒𝑘) of the reward, where 𝑓𝑘𝓁 (𝑒1,… , 𝑒𝑘) is 
the 𝓁-th coordinate of the vector 𝒇 𝑘(𝑒1,… , 𝑒𝑘). We allow general functions 𝑓𝑘𝓁 (⋅) and only require that 

∑𝑘
𝓁=1 𝑓

𝑘
𝓁 (𝑒1,… , 𝑒𝑘) ≤ 1. This 

captures a wide variety of contest success functions. For example, in a single-prize (or winner-takes-all) setting, 𝑓𝑘𝓁 (𝑒1,… , 𝑒𝑘) is the 
probability that contestant 𝓁 wins the entire prize; Section 4.2 and Footnote 13 discuss how our model captures multi-prize settings. 
The utility of a contestant is the reward she gets minus the effort she exerts: 𝑓𝑘𝓁 (𝑒1,… , 𝑒𝑘)𝑅− 𝑒𝓁 . Altogether, for a given number of 
contestants 𝑘, this defines a complete-information game for the contestants.

Definition 2.1. A contest is anonymous if its contest success functions 𝒇 𝑘 ∶ℝ𝑘
≥0 → [0,1]𝑘 satisfy, for any 𝑘 > 0, for any (𝑒1,… , 𝑒𝑘) ∈

ℝ≥0 and any permutation 𝜋 of (1,… , 𝑘),

𝒇𝑘
(
𝑒𝜋(1),… , 𝑒𝜋(𝑘)

)
=
(
𝑓𝑘
𝜋(1)(𝑒1,… , 𝑒𝑘),… , 𝑓𝑘

𝜋(𝑘)(𝑒1,… , 𝑒𝑘)
)
.

Definition 2.2. A contest fully allocates the reward if its CSF 𝒇𝑘 ∶ℝ𝑘
≥0 → [0,1]𝑘 satisfy, ∀𝑘 > 0,∀(𝑒1,… , 𝑒𝑘) ∈ℝ𝑘

≥0, 
∑𝑘

𝓁=1 𝑓
𝑘
𝓁 (𝑒1,… , 𝑒𝑘) =

1.

Example 2.3. A Tullock contest (or more accurately, a single-prize Tullock contest) parameterized by 𝜏 ∈ [0,+∞] has the following 
contest success function:

𝑓𝑘𝓁 (𝑒1,… , 𝑒𝑘) =
⎧⎪⎨⎪⎩

𝑒𝜏
𝓁∑𝑘

𝑗=1 𝑒
𝜏
𝑗

if 𝑒𝑗 > 0 for some 𝑗 ∈ {1,… , 𝑘}, 
1 
𝑘

otherwise.

When 𝜏 → +∞ the contest becomes an “All-Pay Auction (APA)” where the contestant with the highest effort wins with certainty 
(to maintain anonymity, if multiple contestants exert the highest effort, they all win with equal probability). A Tullock contest is 
anonymous and it fully allocates the reward.

The Tullock contest model captures a noisy mapping of effort to output via the randomness parameter 𝜏 . As 𝜏 increases the 
mapping becomes less noisy (more accurate). For example, suppose a contestant who exerts effort 𝑒𝓁 produces a random output 
𝑌𝓁 = 𝜏 log 𝑒𝓁 +𝑍𝓁 where 𝑍𝓁 follows some noise distribution. Efforts are unobservable and the reward is allocated to the contestant 
with maximal 𝑌𝓁 . In this setting, 𝑓𝑘𝓁 (𝑒1, ..., 𝑒𝑘) is the expected fraction of reward received by contestant 𝓁, as a function of contestants’ 
unobserved efforts. When the noise distribution is a Gumbel distribution, 𝑓 becomes a Tullock function (Fu and Wu, 2019). Our model 
therefore captures some of the aspects of unobservable efforts and noisy mappings.

Definition 2.4. Let 𝑅 be the set of all anonymous contests with reward 𝑅 that fully allocate the reward and have a symmetric Nash 
equilibrium among 𝑘 contestants ∀𝑘 > 0.

For example, Alcalde and Dahm (2010) and Baye et al. (1996) show that Tullock contests with parameters 𝜏 ∈ [0,∞) and 𝜏 =∞
admit a symmetric Nash equilibrium (NE); thus, 𝑅 contains all Tullock contests with reward 𝑅. Other examples of contests that 
admit symmetric NE are given in, e.g., the seminal works of Hirshleifer (1989); Nti (1997), a survey by Corchón (2007), as well as 
later works such as Amegashie (2012).

We assume throughout that all contestants in the same contest (with 𝑘 contestants) play a symmetric NE of that contest. Formally, 
for every 𝐶 ∈ 𝑅 we fix a (mixed strategy) symmetric NE, i.e., 𝑒1,… , 𝑒𝓁 ,… , 𝑒𝑘 are i.i.d. random variables that follow a distribution 𝐹
defined by a mixed strategy NE. Since 𝐶 is anonymous, in the symmetric NE all contestants get an equal expected fraction of the reward 
and hence their expected utilities are identical. We denote their identical expected utility by 𝛾𝐶 (𝑘) =E𝑒1,…,𝑒𝑘∼𝐹 [𝑓

𝑘
𝓁 (𝑒1,… , 𝑒𝑘)𝑅− 𝑒𝓁]. 

Moreover, since 𝐶 ∈ 𝑅 fully allocates the reward, we must have E𝑒1 ,…,𝑒𝑘∼𝐹

[
𝑓𝑘𝓁 (𝑒1,… , 𝑒𝑘)

]
= 1 

𝑘
and hence

5 Notice that the reward 𝑅 does not vary with the number of contestants. This is the common practice in, e.g., most common crowd-sourcing platforms where 
the contest designer posts the contest description including the reward before knowing the number of contestants. Also, note that we do allow the prize allocation 
method (as captured by 𝒇𝑘) to vary with 𝑘. In full generality, our results hold even if the reward is weakly monotonically decreasing with 𝑘, i.e., the designer offers 
smaller rewards if more contestants arrive. This is not a well-studied case and we skip treating it formally for simplicity. Curiously, it can find interpretation when the 
designer has a cap over the number of contestants it can accommodate for a contest, e.g., NPR (2022) describes a story where a village’s recreational contest became 
too popular and thus was canceled.
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𝛾𝐶 (𝑘) =
𝑅

𝑘 
−E𝑒𝓁∼𝐹

[
𝑒𝓁
]
. (1)

If 𝑘 = 1, the single contestant does not exert any effort, hence 𝛾𝐶 (1) =𝑅. We also have 𝛾𝐶 (𝑘) ≥ 0 ∀𝑘 > 0 since a contestant can choose 
to exert zero effort and guarantee non-negative utility. Moreover, since 𝑒𝓁 ≥ 0, 𝛾𝐶 (𝑘) ≤

𝑅

𝑘 .

2.2. Contest competition game

We study a game where multiple contest designers compete by choosing their contest success functions. The total prize that each 
contest designer 𝑖 offers is 𝑅𝑖, assumed to be an exogenous constant. Contestants observe these contests and each chooses one to 
participate in. The utility of contest designer 𝑖 when the number of participants in her contest is 𝑘 ≥ 1 is defined to be the sum of 
contestants’ efforts 

∑𝑘
𝓁=1 𝑒𝓁 . When 𝑘 = 0, designer 𝑖’s utility is defined to be 𝛼𝑖 ⋅𝑅𝑖, for some constant 0 ≤ 𝛼𝑖 < 1, since in this case 

the contest designer keeps the reward.6 Using 𝛾𝐶𝑖 (𝑘), we can write the (expected) utility of the designer of a contest 𝐶𝑖 ∈ 𝑅𝑖
with 

𝑘 ≥ 1 contestants by rearranging (1):

E𝑒1 ,…,𝑒𝑘∼𝐹

[
𝑘 ∑

𝓁=1
𝑒𝓁

]
= 𝑘E𝑒𝓁∼𝐹

[
𝑒𝓁
]
=𝑅𝑖 − 𝑘𝛾𝐶𝑖 (𝑘). (2)

We assume that the utility of a contest designer is the expected sum of efforts even if this is sometimes not fully observable. This 
fits settings like workplace contests that aim to improve workers’ productivity, when workers’ productivity is linear. In an additive 
noise model, the expected sum of efforts is equal to the expected sum of qualities of submissions since the expected noise is usually 
assumed to be zero.

Definition 2.5. A complete-information contest competition game is denoted by 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑚𝑖=1, (𝑖)𝑚𝑖=1), where 𝑚 ≥ 2 is the number 
of contest designers, 𝑛 ≥ 1 is the number of contestants, 𝑅𝑖 > 0 is the reward of contest 𝑖, and 𝑖 ⊆ 𝑅𝑖 . The game has two phases:

1. Designers choose contests. Each designer 𝑖 chooses a contest 𝐶𝑖 ∈ 𝑖 simultaneously. Contestants observe the chosen contests 
(𝐶1,… ,𝐶𝑚).

2. Contestants play a normal-form game of choosing in which contest to participate. A pure strategy of each contestant in this 
game is to choose one contest. Importantly, contestants may play a mixed strategy: each contestant 𝓁 participates in each contest 
𝐶𝑖 (𝑖 = 1, ...,𝑚) with probability 𝑝𝓁𝑖, 

∑𝑚
𝑖=1 𝑝𝓁𝑖 = 1. Let the probability distribution chosen by contestant 𝓁 be 𝒑𝓁 = (𝑝𝓁1, ..., 𝑝𝓁𝑚).

After Nature assigns contestants to contests, utilities are realized as follows. If 𝑘 ≥ 1 contestants participate in contest 𝐶𝑖 , each of 
them gains utility 𝛾𝐶𝑖 (𝑘) and designer 𝑖 gains utility 𝑅𝑖 − 𝑘𝛾𝐶𝑖 (𝑘). If 𝑘 = 0, the designer’s utility is 𝛼𝑖 ⋅𝑅𝑖.

An important element of our model is the space 𝑖 of all possible contests a designer can strategically choose. We treat this as an 
abstract set of anonymous contests that fully allocate the reward and admit a symmetric Nash equilibrium among 𝑘 contestants for 
any 𝑘 > 0. A central example is the set of Tullock contests.

Contestants must participate in some contest, i.e., they cannot decide not to participate. This assumption is innocuous since, as 
remarked above, the contestants’ utilities in equilibrium are always non-negative. (In fact, they are strictly positive since a contestant 
gets the reward for free when no other contestants show up, which happens with positive probability.) When a contestant decides 
on a level of effort to exert, she knows the total number of contestants 𝑘 that participate in the same contest. In practice, contestants 
observe this number in physical contests (like sports contests) or if the designer reveals this information. Myerson and Wärneryd 
(2006) show that contest designers have an incentive to reveal the number of contestants because the expected aggregate effort in a 
contest with a commonly known number of contestants is higher in general; Lim and Matros (2009) show that for Tullock contests 
with binomial participation distribution, the designer always reveals the number 𝑘; Ryvkin and Drugov (2020) characterize that this 
is true in general for contests with concave marginal costs.

In the second phase, each contestant has a finite number 𝑚 of possible pure strategies and the game is symmetric, hence there must 
exist at least one symmetric mixed strategy NE (Nash, 1951). We assume throughout that contestants play a symmetric equilibrium, 
so the probability distributions of all contestants are the same: 𝒑1 = 𝒑2 =⋯ = 𝒑𝑛. Example ii.1 in the online appendix discusses the 
case where the contestants can choose an asymmetric equilibrium, where our main result may not hold. As argued by Burdett et al. 
(2001), a symmetric equilibrium requires no coordination among contestants and is more robust and natural than an asymmetric 
equilibrium. We denote by 𝒑(𝐶1,… ,𝐶𝑚) ∈ ℝ𝑚 the probability distribution chosen by the contestants at a symmetric equilibrium 
when the designers choose contests (𝐶1,… ,𝐶𝑚) in the first phase. If there are multiple symmetric equilibria, 𝒑(𝐶1,… ,𝐶𝑚) can be 
any one of them; our results hold for all of them.7

Assume that designers choose contests 𝑪 = (𝐶1,… ,𝐶𝑚) and contestants choose symmetric participation probabilities 𝒑(𝑪) =
(𝑝1,… , 𝑝𝑚). For a contestant participating in 𝐶𝑖 , the number of other contestants who also participate in 𝐶𝑖 follows the binomial 
distribution Bin(𝑛− 1, 𝑝𝑖). Thus, the expected utility of a contestant participating in 𝐶𝑖 , denoted by 𝛽(𝐶𝑖, 𝑝𝑖), is:

6 When 𝛼𝑖 ≥ 1, the contest designer prefers to opt out of the contest competition game and keep the reward. If the contest designer cannot do that then most of our 
results in fact hold for any 𝛼𝑖 ≥ 0.

7 In addition, Lemma 2.8 shows that the symmetric equilibrium is unique if a certain condition (satisfied by, e.g., all Tullock contests) holds.
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𝛽(𝐶𝑖, 𝑝𝑖) =E𝑘∼Bin(𝑛−1,𝑝𝑖)

[
𝛾𝐶𝑖 (𝑘+ 1)

]
=

𝑛−1 ∑
𝑘=0

(
𝑛− 1
𝑘 

)
𝑝𝑘
𝑖
(1 − 𝑝𝑖)𝑛−1−𝑘𝛾𝐶𝑖 (𝑘+ 1). (3)

Let Supp(𝑪) = {𝑖 ∶ 𝑝𝑖(𝑪) > 0} be the set of indices of contests in which contestants participate with positive probability (i.e., the 
support of 𝒑(𝑪)).

Claim 2.1 (Equilibrium condition in the participation game of the contestants). Suppose that designers choose contests 𝑪 = (𝐶1,… ,𝐶𝑚) in 
the first phase of the game and contestants participate in contests with probabilities 𝒑(𝑪) = (𝑝1,… , 𝑝𝑚) in equilibrium. Then,

• For 𝑖∈ Supp(𝑪), 𝛽(𝐶𝑖, 𝑝𝑖) ≥ 𝛽(𝐶𝑗, 𝑝𝑗 ), ∀𝑗 = 1,… ,𝑚.

• Thus, for 𝑖, 𝑗 ∈ Supp(𝑪), 𝛽(𝐶𝑖, 𝑝𝑖) = 𝛽(𝐶𝑗, 𝑝𝑗 ).

Proof. (𝑝1,… , 𝑝𝑚) is a symmetric equilibrium, i.e., given that all other contestants play (𝑝1,… , 𝑝𝑚), a player’s best response is to play 
(𝑝1,… , 𝑝𝑚) herself. Therefore, the expected utility of choosing to participate in contest 𝑖 is at least as high as choosing to participate 
in contest 𝑗, as contest 𝑖 is assigned a positive probability 𝑝𝑖 > 0. □

2.3. Equilibrium among contest designers

We use 𝑪 = (𝐶𝑖,𝑪−𝑖) = (𝐶1,… ,𝐶𝑚) to denote the contests (strategies) chosen by all designers, where 𝑪−𝑖 denotes the contests 
chosen by designers other than 𝑖. Let 𝑢𝑖(𝐶𝑖,𝑪−𝑖) be the expected utility of contest designer 𝑖 given that contestants play the equilibrium 
𝒑(𝐶𝑖,𝑪−𝑖). Formally, by (2) the utility of the designer of contest 𝐶𝑖 equals 𝑅𝑖 − 𝑘𝛾𝐶𝑖 (𝑘) when there are 𝑘 ≥ 1 contestants. Since each 
contestant participates in 𝐶𝑖 independently with probability 𝑝𝑖 = 𝑝𝑖(𝐶𝑖,𝑪−𝑖), the total number 𝑘 of contestants participating in 𝐶𝑖
follows the binomial distribution Bin(𝑛, 𝑝𝑖), and hence the designer’s expected utility equals

𝑢𝑖(𝐶𝑖,𝑪−𝑖) =E𝑘∼Bin(𝑛,𝑝𝑖)

[ (
𝑅𝑖 − 𝑘𝛾𝐶𝑖 (𝑘)

)
⋅ 1[𝑘≥1] + 𝛼𝑖𝑅𝑖 ⋅ 1[𝑘=0]

]
. (4)

Claim 2.2. The expected utility 𝑢𝑖(𝐶𝑖,𝑪−𝑖) of designer 𝑖 is equal to

𝑢𝑖(𝐶𝑖,𝑪−𝑖) = 𝑅𝑖 − (1 − 𝑝𝑖)𝑛(1 − 𝛼𝑖)𝑅𝑖
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

expected welfare generated by contest 𝑖

− 𝑛𝑝𝑖𝛽(𝐶𝑖, 𝑝𝑖).
⏟ ⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏟

contestants’ expected utility obtained from contest 𝑖

(5)

Proof.

𝑢𝑖(𝐶𝑖,𝑪−𝑖) =E𝑘∼Bin(𝑛,𝑝𝑖)

[(
𝑅𝑖 − 𝑘𝛾𝐶𝑖 (𝑘)

)
⋅ 1[𝑘≥1] + 𝛼𝑖𝑅𝑖 ⋅ 1[𝑘=0]

]
=

𝑛 ∑
𝑘=1

(
𝑛 
𝑘

)
𝑝𝑘
𝑖
(1 − 𝑝𝑖)𝑛−𝑘(𝑅𝑖 − 𝑘𝛾𝐶𝑖 (𝑘)) + (1 − 𝑝𝑖)𝑛𝛼𝑖𝑅𝑖

=
𝑛 ∑

𝑘=1

(
𝑛 
𝑘

)
𝑝𝑘𝑖 (1 − 𝑝𝑖)𝑛−𝑘𝑅𝑖 −

𝑛 ∑
𝑘=1

(
𝑛 
𝑘

)
𝑝𝑘𝑖 (1 − 𝑝𝑖)𝑛−𝑘𝑘𝛾𝐶𝑖 (𝑘) + (1 − 𝑝𝑖)𝑛𝛼𝑖𝑅𝑖

=𝑅𝑖

[
1 − (1 − 𝑝𝑖)𝑛

]
+ (1 − 𝑝𝑖)𝑛𝛼𝑖𝑅𝑖 − 

𝑛 ∑
𝑘=1

(
𝑛 
𝑘

)
𝑝𝑘𝑖 (1 − 𝑝𝑖)𝑛−𝑘𝑘𝛾𝐶𝑖 (𝑘)

=𝑅𝑖 − (1 − 𝑝𝑖)𝑛(1 − 𝛼𝑖)𝑅𝑖 − 𝑛𝑝𝑖
𝑛 ∑

𝑘=1

(
𝑛− 1 
𝑘− 1

)
𝑝𝑘−1𝑖 (1 − 𝑝𝑖)𝑛−𝑘𝛾𝐶𝑖 (𝑘)

=𝑅𝑖 − (1 − 𝑝𝑖)𝑛(1 − 𝛼𝑖)𝑅𝑖 − 𝑛𝑝𝑖E𝑘′∼Bin(𝑛−1,𝑝𝑖)

[
𝛾𝐶𝑖 (𝑘

′ + 1)
]
,

which equals 𝑅𝑖 − (1 − 𝑝𝑖)𝑛(1 − 𝛼𝑖)𝑅𝑖 − 𝑛𝑝𝑖𝛽(𝐶𝑖, 𝑝𝑖) by (3). □

We analyze the following solution concepts:

Definition 2.6. Given some 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑚𝑖=1, (𝑖)
𝑚
𝑖=1),

• A contest 𝐶𝑖 ∈ 𝑖 is (weakly) dominant if ∀𝐶 ′
1 ∈ 1, ...,𝐶

′
𝑚
∈ 𝑚, 𝑢𝑖(𝐶𝑖,𝑪′

−𝑖) ≥ 𝑢𝑖(𝐶 ′
𝑖
,𝑪′

−𝑖).
• A tuple of contests (𝐶1,… ,𝐶𝑚), where 𝐶𝑖 ∈ 𝑖, is a contestant-symmetric subgame-perfect equilibrium (contestant-symmetric SPE) if 
𝑢𝑖(𝐶𝑖,𝑪−𝑖) ≥ 𝑢𝑖(𝐶 ′

𝑖
,𝑪−𝑖),∀𝐶 ′

𝑖
∈ 𝑖,∀𝑖.

For simplicity and also for practical purposes, we do not consider the case where designers play mixed strategies.
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2.4. Some properties of contests

Our results use the following three properties of contests:

Definition 2.7. 

• A contest 𝐶𝑖 ∈ 𝑅𝑖
has monotonically decreasing utility (MDU) if a contestant’s symmetric NE utility is decreasing as the number 

of contestants increases: 𝛾𝐶𝑖 (1) ≥ 𝛾𝐶𝑖 (2) ≥⋯ ≥ 𝛾𝐶𝑖 (𝑛).
• A contest 𝐶𝑖 ∈ 𝑖 ⊆ 𝑅𝑖

has maximal rent dissipation (MRD) in 𝑖 if ∀𝐶 ′
𝑖
∈ 𝑖, ∀𝑘 ∈ {1,… , 𝑛}, 𝛾𝐶𝑖 (𝑘) ≤ 𝛾𝐶′

𝑖
(𝑘). In words, MRD 

contests minimize contestants’ symmetric NE utility, or equivalently maximize the designer’s utility, regardless of the number of 
contestants. Let MRD(𝑖) ⊆ 𝑖 denote the set of all MRD contests in 𝑖.

• A contest 𝐶𝑖 ∈ 𝑅𝑖 has full rent dissipation (FRD) if 𝛾𝐶𝑖 (1) =𝑅𝑖 and 𝛾𝐶𝑖 (𝑘) = 0 for 𝑘 = 2,… , 𝑛.

Lemma 4.1 will show that all Tullock contests satisfy MDU. This is not unique to Tullock contests: e.g., Proposition 2 of Nti (1997) 
shows a large class of contests that also satisfy MDU. A full-rent-dissipation contest 𝐶𝑖 satisfies both MDU and MRD in any set 𝑖 that 
contains it. (Baye et al., 1996) show that APA has full rent dissipation. In fact, we note in Section 4.1 that every Tullock contest with 
𝜏 ≥ 2 has full rent dissipation.

Arguably, one of the strengths of our approach is the level of abstraction of our contest model. For this reason, we embrace a 
characterization that follows the abstract MDU and MRD properties (as opposed to studying specific contest formats), though later 
we also consider specific applications and counter examples to MDU and MRD. Nevertheless, we point out that MDU and MRD are 
almost without loss of generality, since, given any existing set of contests 𝑖 , one can always construct an additional contest which 
satisfies MDU and MRD by combining contests in 𝑖. This is formally discussed in Section 2.5.

We next briefly discuss some basic implications of MDU and MRD.

Claim 2.3. If 𝐶𝑖 has MDU and 𝑝 < 𝑝′, then 𝛽(𝐶𝑖, 𝑝) > 𝛽(𝐶𝑖, 𝑝′).

Proof. Appendix A. □

Claim 2.4. Let 𝑇𝑖 ∈MRD(𝑖), and let 𝐶𝑖 ∈ 𝑖 be any other contest in 𝑖. Then ∀𝑝 ∈ [0,1], 𝛽(𝑇𝑖, 𝑝) ≤ 𝛽(𝐶𝑖, 𝑝).

Proof. By the definition of maximal rent dissipation contest, 𝛾𝐶𝑖 (𝑘 + 1) ≥ 𝛾𝑇𝑖 (𝑘 + 1) for all 𝑘 = 0,… , 𝑛 − 1, thus 𝛽(𝐶𝑖, 𝑝) =
E𝑘∼Bin(𝑛−1,𝑝)[𝛾𝐶𝑖 (𝑘+ 1)] ≥E𝑘∼Bin(𝑛−1,𝑝)[𝛾𝑇𝑖 (𝑘+ 1)] = 𝛽(𝑇𝑖, 𝑝). □

MDU also implies that the contestants have only one symmetric equilibrium when choosing contests to participate:

Lemma 2.8. If 𝑪 = (𝐶1,… ,𝐶𝑚) are MDU contests, then the contestants’ symmetric equilibrium 𝒑(𝑪) is unique.

Proof. Let 𝒑 = (𝑝1,… , 𝑝𝑚) and 𝒑′ = (𝑝′1,… , 𝑝′𝑚) be two different symmetric equilibria for contestants. Then there exist 𝑖, 𝑗 such that 
𝑝𝑖 > 𝑝′

𝑖
and 𝑝𝑗 < 𝑝′

𝑗
and we get the following contradiction:

𝛽(𝐶𝑖, 𝑝′𝑖) > (𝑝′𝑖 < 𝑝𝑖,𝐶𝑖 has MDU, Claim 2.3)

𝛽(𝐶𝑖, 𝑝𝑖) ≥ (𝑝𝑖 > 0,Claim 2.1)

𝛽(𝐶𝑗, 𝑝𝑗 ) > (𝑝𝑗 < 𝑝′𝑗 ,𝐶𝑗 has MDU, Claim 2.3)

𝛽(𝐶𝑗, 𝑝′𝑗 ) ≥ (𝑝′𝑗 > 0,Claim 2.1)

𝛽(𝐶𝑖, 𝑝′𝑖). □

2.5. Constructing an MDU and MRD contest from an existing 𝑖

This subsection shows how, given any existing set of contests 𝑖 (that might not have a MDU and MRD contest), one can always 
construct a new contest that satisfies MDU and MRD by combining the contests in 𝑖 . Thus, we believe that these two properties 
are almost without loss of generality. First, we point out that MRD is innocuous since the designer can let the contest depend on 𝑘
(the number of participants): starting from any set of contests 𝑖 , we construct a new contest 𝐶∗

𝑖
that for each 𝑘 selects the contest 

𝐶𝑘
𝑖

that maximizes rent dissipation among the feasible set of contests for that specific 𝑘.8 This contest 𝐶∗
𝑖

by definition has the 
MRD property with respect to the set 𝑖 ∪ {𝐶∗

𝑖
}. Then, for MDU (monotonically decreasing utility), while it is an arguably natural 

8 Formally, 𝐶𝑘
𝑖
= arg min𝐶𝑖∈𝑖 𝛾𝐶𝑖 (𝑘). We do assume that the “argmin” exists.
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property of contests, we nevertheless show how to transform any non-MDU contest into an MDU contest without decreasing the 
contest designer’s utility, using the following procedure:

MDU smoothing. Let 𝐶𝑖 be a non-MDU contest. By definition, there exists an index 𝑘1 such that 𝛾𝐶𝑖 (𝑘1) < 𝛾𝐶𝑖 (𝑘1 + 1). Choose the 
minimal such 𝑘1. We construct another contest 𝐶 ′

𝑖
as follows:

(1) When there are 𝑘 ≠ 𝑘1 + 1 contestants participating, run the same contest as 𝐶𝑖 .
(2) When there are 𝑘1 + 1 contestants participating, first uniformly randomly sample a subset of 𝑘1 contestants from the 𝑘1 + 1

contestants, announce this subset, and then run the 𝑘1-contestant contest 𝐶𝑖 on this subset.

(3) Repeat this process until no such 𝑘1 exists.

Note that, different from the single-contest model described in Section 2.1 where the contestants decide on efforts at the beginning 
of the contest, we assume here that contestants decide on efforts after seeing the realization of the random subset. This difference 
does not affect any of our results because our analysis only depends on (1) the contestants’ equilibrium utility function 𝛾𝐶𝑖 (⋅), (2) 
anonymity of the contest, (3) the contest fully allocates the reward; We emphasize that our analysis does not depend on the specific 
contest format.

Lemma 2.9. Let 𝐶𝑖 be a non-MDU contest. The 𝐶 ′
𝑖

constructed by the MDU smoothing procedure satisfies MDU. Moreover, the contestants’ 
utility is weakly smaller in 𝐶 ′

𝑖
: ∀𝑘, 𝛾𝐶′

𝑖
(𝑘) ≤ 𝛾𝐶𝑖 (𝑘).

Corollary 2.10. If 𝐶𝑖 ∈MRD(𝑖) does not satisfy MDU, then by adding the 𝐶 ′
𝑖

in Lemma 2.9 to 𝑖, we have 𝐶 ′
𝑖
∈MRD(𝑖 ∪ {𝐶 ′

𝑖
}) and 

𝐶 ′
𝑖

satisfies MDU.

Proof of Lemma 2.9. Consider any single iteration of MDU smoothing that transforms 𝐶𝑖 to 𝐶 ′
𝑖
. Under 𝐶 ′

𝑖
, when there are 𝑘 ≠ 𝑘1 +1

contestants, each contestant’s equilibrium utility is the same as that in 𝐶𝑖 :

𝛾𝐶′
𝑖
(𝑘) = 𝛾𝐶𝑖 (𝑘), ∀𝑘 ≠ 𝑘1 + 1. (6)

When there are 𝑘1 + 1 contestants, each contestant will play the following strategy in symmetric equilibrium:

• If the contestant is in the subset of 𝑘1 contestants, they play according to the equilibrium strategy in 𝐶𝑖, obtaining utility 𝛾𝐶𝑖 (𝑘1);
• If the contestant is not in the subset of 𝑘1 contestants, they exert 0 effort (because they will not be allocated the reward regardless 

of effort), obtaining utility 0.

So, the expected utility of a contestant in the symmetric equilibrium is:

𝛾𝐶′
𝑖
(𝑘1 + 1) = Pr[in the subset] ⋅ 𝛾𝐶𝑖 (𝑘1) + 0 =

𝑘1
𝑘1 + 1

𝛾𝐶𝑖 (𝑘1)  ≤  𝛾𝐶𝑖 (𝑘1) = 𝛾𝐶′
𝑖
(𝑘1). (7)

We see that 𝛾𝐶′
𝑖
(𝑘1 + 1) ≤ 𝛾𝐶′

𝑖
(𝑘1). This means that, by repeating the MDU smoothing procedure for all 𝑘1 where 𝛾𝐶𝑖 (𝑘1) <

𝛾𝐶𝑖 (𝑘1 + 1), we can turn 𝐶𝑖 into a contest 𝐶 ′
𝑖

with monotonically decreasing utility function 𝛾𝐶′
𝑖
(𝑘). Moreover, we note that the 

above construction ensures

𝛾𝐶′
𝑖
(𝑘) ≤ 𝛾𝐶𝑖 (𝑘), (8)

so the lemma is proved. □

3. Main results: equilibria in contest competition games

Our first main result shows that choosing MRD and MDU contests form a subgame perfect equilibrium of the CCG game. Moreover, 
MRD contests are dominant if the set of all possible contests contains only MDU contests:

Theorem 3.1. 

1. Fix any 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑚𝑖=1, (𝑖)
𝑚
𝑖=1) where each 𝑖 ⊆ 𝑅𝑖

contains a maximal rent dissipation contest that has monotonically decreasing 
utility, denoted by 𝑇𝑖 ∈MRD(𝑖). Then, (𝑇1,… , 𝑇𝑚) is a contestant-symmetric SPE.

2. Moreover, if each 𝑖 contains only MDU contests, 𝑇𝑖 is dominant for all 𝑖.
3. Corollary of 1: For any 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑚𝑖=1, (𝑖)

𝑚
𝑖=1) where each 𝑖 ⊆ 𝑅𝑖 contains a full rent dissipation contest (e.g., APA) denoted by 

𝐹𝑖, (𝐹1,… , 𝐹𝑚) is a contestant-symmetric SPE.

We remark that if there are multiple contests with FRD or MRD properties, then these are “payoff equivalent” from both the 
contestants’ and the designers’ point of view. In other words, all players obtain the same expected utility no matter which contests 
are chosen in equilibrium.
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The full proof of Theorem 3.1, as well as most other proofs in this section, are deferred to Appendix B. At a very high level, the 
argument for why MRD contests constitute an equilibrium for the contest competition game is the following:

Proof sketch. Fix a contest designer 𝑖. Suppose each of the 𝑛 contestants participates in 𝑖’s contest with some probability 𝑝𝑖 (assuming 
a symmetric participation equilibrium). By Claim 2.2, 𝑖’s expected utility is equal to

𝑢𝑖(𝐶𝑖,𝑪−𝑖) =𝑅𝑖

[
1 − (1 − 𝑝𝑖)𝑛(1 − 𝛼𝑖)

]
− 𝑛𝑝𝑖𝛽(𝐶𝑖, 𝑝𝑖), (9)

where we recall that 𝑅𝑖

[
1 − (1 − 𝑝𝑖)𝑛(1 − 𝛼𝑖)

]
is the expected welfare generated in contest 𝐶𝑖 and 𝛽(𝐶𝑖, 𝑝𝑖) is each contestant’s expected 

utility conditioning on participating in 𝐶𝑖 . Now, suppose that contest designer 𝑖 switches to a contest 𝐶 ′
𝑖

that requires less effort from 
the contestants (namely, leaving more utility to the contestants) and hence increases the participation probability to 𝑝′

𝑖
= 𝑝𝑖 + Δ𝑝. 

The welfare term 𝑅𝑖

[
1 − (1 − 𝑝𝑖)𝑛(1 − 𝛼𝑖)

]
is increased by

Δ𝑝 ⋅ 𝜕

𝜕𝑝𝑖
𝑅𝑖

[
1 − (1 − 𝑝𝑖)𝑛(1 − 𝛼𝑖)

]
= 𝑛𝑅𝑖(1 − 𝑝𝑖)𝑛−1(1 − 𝛼𝑖)Δ𝑝. (10)

A contestant’s conditional utility in contest 𝑖 is increased, because as contestants participate in other contests 𝐶𝑗 (𝑗 ≠ 𝑖) with lower 
probabilities, the utility that a contestant obtains from 𝐶𝑗 is increased because 𝐶𝑗 has MDU by assumption; since contestants are 
indifferent between contests 𝑖 and 𝑗, their utility obtained from contest 𝑖 must be increased as well. Suppose it is increased to 
𝛽(𝐶 ′

𝑖
, 𝑝′
𝑖
) = 𝛽(𝐶𝑖, 𝑝𝑖) + Δ𝛽. Then, the contestants’ utility term 𝑛𝑝𝑖𝛽(𝐶𝑗, 𝑝𝑖) in (9) is increased by

𝑛𝑝′𝑖𝛽(𝐶
′
𝑖 , 𝑝

′
𝑖) − 𝑛𝑝𝑖𝛽(𝐶𝑖, 𝑝𝑖) = 𝑛(𝑝𝑖 +Δ𝑝)(𝛽(𝐶𝑖, 𝑝𝑖) + Δ𝛽) − 𝑛𝑝𝑖𝛽(𝐶𝑖, 𝑝𝑖)

= 𝑛𝛽(𝐶𝑖, 𝑝𝑖)Δ𝑝+ 𝑛𝑝𝑖Δ𝛽 + 𝑛Δ𝑝Δ𝛽

> 𝑛𝛽(𝐶𝑖, 𝑝𝑖)Δ𝑝 ≥ 𝑛𝑅𝑖(1 − 𝑝𝑖)𝑛−1Δ𝑝, (11)

where the last inequality 𝛽(𝐶𝑖, 𝑝𝑖) ≥ 𝑅𝑖(1 − 𝑝𝑖)𝑛−1 is because a contestant obtains utility 𝑅𝑖 when no other contestants participate 
in 𝐶𝑖, which happens with probability (1 − 𝑝𝑖)𝑛−1. The amount of increase of contestants’ utility (11) outweighs the increase of the 
welfare term (10), so the designer’s total utility (9) is decreased. □

Theorem 3.1 gives a sufficient condition for the existence of a specific type of contestant-symmetric subgame-perfect equilibria, 
namely that the 𝑖 contains MDU and MRD contests. Monotonically Decreasing Utilities rule out some design instruments, for example, 
caps on efforts (one could imagine a design in which the cap is decreasing in the number of contestants). We emphasize that, in our 
model, the 𝑖 can contain other arbitrary types of contests, including non-MDU contests; the point is that if the 𝑖 contains MDU and 
MRD contests then these contests form contestant-symmetric subgame-perfect equilibria. Nevertheless, by introducing caps on efforts 
(thus violating MDU), the following example shows that other types of equilibria may also exist and that MDU and MRD contests are 
not dominant. Section i in the online appendix gives additional examples and a more detailed discussion.

Example 3.2. Let 𝑚 = 2, 𝑛 = 6, 𝑅1 = 𝑅2 = 1, 𝛼1 = 𝛼2 = 0, both 1 and 2 consist of two contests: APA, and a contest 𝐶 that gives 
the reward for free when the number of contestants is 𝑘 = 5,6 and runs APA otherwise. Thus, 𝛾𝐶 = (1,0,0,0,1∕5,1∕6), which is not 
MDU. The next paragraph shows that (𝐶,𝐶) is a contestant-symmetric SPE and that APA is not a best-response to 𝐶 (and therefore 
not dominant). By Theorem 3.1, (APA,APA) is still a contestant-symmetric SPE of this game. Furthermore, by Theorem 3.7, both 
designers strictly prefer (APA,APA) over (𝐶,𝐶).

When designers choose (𝐶,𝐶), by symmetry, contestants participate in either contest with equal probability (0.5,0.5). By direct 
computation (e.g., using (5)), the expected utility of each designers is (0.7812,0.7812). Now suppose designer 1 switches to APA. The 
probabilities (𝑝1, 𝑝2) = 𝒑(APA,𝐶) in the contestants’ symmetric mixed strategy Nash equilibrium must satisfy, according to Claim 2.1, 
𝛽(APA, 𝑝1) = 𝛽(𝐶,𝑝2) (assuming 𝑝1, 𝑝2 > 0). By numerical methods, we find that (𝑝1, 𝑝2) = (0.4061,0.5939). The expected utility of 
designers is then (0.7761,0.7323). Since 0.7761< 0.7812, designer 1 does not switch to APA. By symmetry, designer 2 does not switch 
to APA. Hence, (𝐶,𝐶) is an equilibrium, and APA is not a dominant contest.

In this example, for every 𝑘, 𝒇 𝑘 uses a Tullock contest with a parameter 𝜏𝑘 that depends on 𝑘 (namely, 𝜏𝑘 = 0 for 𝑘 = 5,6 and +∞
otherwise). An example where we use 𝜏𝑘 = 1 instead of 𝜏𝑘 = 0 for some 𝑘 could be constructed in a similar way.9

When the sets 𝑖 contain only MDU contests, the contestant-symmetric subgame-perfect equilibria that Theorem 3.1 describes are 
the only possible equilibria:

Theorem 3.3. Fix any 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑚𝑖=1, (𝑖)
𝑚
𝑖=1) where each 𝑖 ⊆ 𝑅𝑖 contains only MDU contests. Assume MRD(𝑖) ≠ ∅ for each 𝑖. Pick 

𝑇𝑖 ∈MRD(𝑖), and let �̃�𝑖 = 𝑝𝑖(𝑇1,… , 𝑇𝑚) be the probability a contestant participates in contest 𝑇𝑖 in the equilibrium of contestants, and let 

9 In particular, 𝑚 = 2, 𝑛 = 10, 𝑅1 =𝑅2 = 1, both 1 and 2 consist of two contests: the APA contest and a contest 𝐶 with 𝛾𝐶 = (1,0,0,0,0,0,1∕49,1∕64,1∕81,1∕100), 
that is, choosing Tullock contest with 𝜏𝑘 = 1 when 7 ≤ 𝑘 ≤ 10 and 𝜏𝑘 = +∞ otherwise. Then (𝐶,𝐶) is a contestant-symmetric SPE, and APA is not a dominant contest 
for either designer. See Example i.1 in the online appendix for details. Moreover, Example i.2 in the online appendix shows that even if 𝑆1 contains only contests with 
monotonically decreasing utility, APA may not be a dominant contest for designer 1.
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𝑃 = Supp(𝑻 ) = {𝑖 ∶ �̃�𝑖 > 0} be the set of indices of contests in which contestants participate with positive probability when the contests are 
(𝑇1,… , 𝑇𝑚). Then

1. for any contestant-symmetric SPE (𝐶1,… ,𝐶𝑚), 𝑝𝑖(𝐶1,… ,𝐶𝑚) = �̃�𝑖.

2. if |𝑃 | ≥ 2, then (𝐶1,… ,𝐶𝑚) ∈ 1 ×⋯ × 𝑚 is a contestant-symmetric SPE if and only if 𝐶𝑖 ∈MRD(𝑖),∀𝑖 ∈ 𝑃 .10

3. if |𝑃 | = 1, let 𝑃 = {𝑖0}, then (𝐶1,… ,𝐶𝑚) ∈ 1 ×⋯ × 𝑚 is a contestant-symmetric SPE if and only if 𝛾𝐶𝑖0 (𝑛) = 𝛾𝑇𝑖0
(𝑛).11

In the symmetric-reward case we can show that |𝑃 | =𝑚, which makes the statement shorter:

Corollary 3.4. Suppose each 𝑖 contains only MDU contests, has MRD(𝑖) ≠ ∅, and 𝑅1 = ⋯ = 𝑅𝑚 (symmetric rewards). Then 
(𝐶1,… ,𝐶𝑚) ∈ 1 ×⋯ × 𝑚 is a contestant-symmetric SPE if and only if 𝐶𝑖 ∈MRD(𝑖) for all 𝑖 ∈ {1,… ,𝑚}.

Proof. Relying on the second item of Theorem 3.3, we only need to show that |𝑃 | = 𝑚 in this symmetric-reward case. Assume 
by contradiction that there exists 𝑖 such that �̃�𝑖 = 0. Since 

∑𝑚
𝓁=1 �̃�𝓁 = 1, there exists 𝑗 ≠ 𝑖 such that �̃�𝑗 > 0. Then by Claim 2.3, 

𝛽(𝑇𝑗 , �̃�𝑗 ) < 𝛽(𝑇𝑗 ,0) = 𝑅𝑗 = 𝑅𝑖 = 𝛽(𝑇𝑖, �̃�𝑖). However, this contradicts the equilibrium condition (Claim 2.1) which states that �̃�𝑗 > 0
implies 𝛽(𝑇𝑗 , �̃�𝑗 ) ≥ 𝛽(𝑇𝑖, �̃�𝑖). Therefore, we conclude that �̃�𝑖 > 0 for all 𝑖 ∈ {1,… ,𝑚}, i.e., |𝑃 | =𝑚 as required. □

Thus, the case of symmetric rewards is a “clear cut” while the general case is more involved. The following example demonstrates 
the need for this distinction using a setting with highly asymmetric rewards. See Appendix B.4 for proof.

Example 3.5. Consider 𝑛 contestants and 𝑚 ≥ 3 contest designers with 0 ≤ 𝛼𝑖 < 1. Contest 1 has reward 𝑅1 = 1, and each other 

contest has reward 𝑅𝑗 =
(
𝑚−1
𝑚−2

)𝑛−1
+ 1. Each set 𝑖 contains all MDU contests (hence contains APA). Then for any contest 𝐶1 ∈ 1, 

(𝐶1, 𝑇2,… , 𝑇𝑚) where 𝑇𝑗 =APA ∈MRD(𝑗 ) for 𝑗 = 2,… ,𝑚 is a contestant-symmetric SPE. In this equilibrium, 𝑝1(𝐶1, 𝑇2,… , 𝑇𝑚) = 0, 
and 𝑝𝑗 (𝐶1, 𝑇2,… , 𝑇𝑚) =

1 
𝑚−1 > 0 for any 𝑗 = 2,… ,𝑚.

Finally, the equilibria in Theorem 3.1 are Pareto optimal for the contest designers:

Definition 3.6. 

• For two strategy profiles �̂� = (�̂�1,… , �̂�𝑚),𝑪 = (𝐶1,… ,𝐶𝑚) ∈ 1 ×⋯ × 𝑚 of the contest competition game 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑚𝑖=1, 
(𝑖)𝑚𝑖=1), we say 𝑪 is a Pareto improvement of �̂� , if 𝑢𝑖(𝑪) ≥ 𝑢𝑖(�̂�) for all 𝑖 ∈ {1,… ,𝑚} and 𝑢𝑖(𝑪) > 𝑢𝑖(�̂�) for at least one 𝑖 ∈
{1,… ,𝑚}.

• A strategy profile �̂� = (�̂�1,… , �̂�𝑚) is Pareto Optimal (PO) if there is no Pareto improvement of it.

Theorem 3.7. The equilibria in Theorem 3.1 are PO.

4. Applications

4.1. Competition among tullock contests

We first apply our results to the special case where the sets 𝑖 are arbitrary subsets of Tullock contests, i.e., the parameter 𝜏
becomes a strategic choice (as suggested in e.g. Michaels (1988); Nitzan (1994); Wang (2010)). Some of the previous literature views 
𝜏 as an exogenous parameter representing how accurately the designer can observe the ranking of contestants’ efforts and the resulting 
qualities of their submissions. Even so, it seems plausible that the designer can choose an “ignorance is bliss” approach where she 
lowers the 𝜏 value (thus, observes efforts’ ranking less accurately) to encourage participation. Such situations occurred in practice as 
we have discussed in the introduction.

It is known that APA has full rent dissipation (Baye et al., 1996) and in fact, as a corollary of Ewerhart (2017), every Tullock 
contest with parameter 𝜏 ≥ 2 has full rent dissipation. Thus, the class of Tullock contests contains maximal rent dissipation contests 
(namely, those with 𝜏 ≥ 2). Also, it is a class of contests that have monotonically decreasing utility:

Lemma 4.1 (Corollary of Baye et al. (1996); Schweinzer and Segev (2012); Ewerhart (2017)). A contestant’s utility in a Tullock contest 
𝐶𝜏 with parameter 𝜏 ∈ [0,+∞], reward 𝑅, and 𝑘 total contestants equals

10 If 𝑝𝑖(𝐶1, ..., 𝐶𝑚) = 0, contest 𝑖 could be anything since 𝑖’s utility, which is 0, cannot be improved by choosing any other contest 𝐶 ′
𝑖

as (𝐶𝑖,𝑪−𝑖) is an equilibrium. 
Moreover, by Claim B.1, 𝑝𝑖(𝐶 ′

𝑖
,𝑪−𝑖) must be 0 as well, so the choice of 𝐶 ′

𝑖
does not affect the choices of contests of other designers.

11 As 𝑝𝑖0 (𝐶1,… , 𝐶𝑚) = 1, with probability 1 there are 𝑛 contestants in contest 𝑖0 , thus the contest success functions of contest 𝑖0 for 𝑘≠ 𝑛 have no effect on the utility 
calculation for the contestants’ best response and could be anything.
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𝛾𝐶𝜏 (𝑘) =
⎧⎪⎨⎪⎩
𝑅 if 𝑘 = 1,
𝑅( 1 

𝑘
− 𝑘−1

𝑘2
𝜏) if 𝑘 

𝑘−1 ≥ 𝜏,

0 if 𝑘 
𝑘−1 < 𝜏 ≤ +∞.

(12)

As corollaries,

• Every Tullock contest satisfies MDU.

• Any Tullock contest with 𝜏 ≥ 2 has full rent dissipation.

• If  is the set of all Tullock contests with parameter 𝜏 in some range whose maximum 𝜏max is well defined and at most 2, then the Tullock 
contest with 𝜏max is the only contest in MRD().

A proof of this lemma is given in Appendix C. Theorem 3.1 therefore immediately implies:

Corollary 4.2. 

1. Let 𝑅𝑖 be the set of all Tullock contests with reward 𝑅𝑖. Then, APA and any other Tullock contest with 𝜏 ≥ 2 is a dominant contest for 
every designer in 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑚𝑖=1, (𝑅𝑖 )

𝑚
𝑖=1).

2. If 𝑖 is the set of all Tullock contests with parameter 𝜏𝑖 in some range whose maximum 𝜏max
𝑖

is well defined and at most 2. Then, the 
Tullock contest with 𝜏max

𝑖
is the only dominant contest for every designer in 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑚𝑖=1, (𝑖)

𝑚
𝑖=1).

4.2. Contests with varying prize structures

Clark and Riis (1998) consider a formal model of prize structures, as follows. Given a total prize 𝑅𝑖, each designer 𝑖 divides it 
into multiple prizes 𝑅1

𝑖
> 0,… ,𝑅𝑠

𝑖
> 0 after seeing the number of contestants 𝑘 participating in her contest, with 

∑𝑠
𝑗=1𝑅

𝑗
𝑖
= 𝑅𝑖 and 

𝑠 ≤ 𝑘.12 Let 𝑒𝓁 denote the effort a contestant 𝓁 exerts in designer 𝑖’s contest. Let 𝜏 > 0 be a fixed parameter. Each contestant in 𝑖’s 
contest wins 𝑅1

𝑖
with probability proportional to (𝑒𝓁)𝜏 ; after the winner of 𝑅1

𝑖
is determined, one of the remaining contestants is 

randomly chosen to win 𝑅2
𝑖

with probability again proportional to (𝑒𝓁)𝜏 ; and so on.13 As shown by Clark and Riis (1998), as long as 
pure-strategy symmetric effort-exerting equilibria for the contestants exist, setting 𝑠 = 1 and 𝑅1

𝑖
=𝑅𝑖 gives more utility to the designer 

than any other partition of the total reward. In our terminology, the contest with 𝑠 = 1, 𝑅1
𝑖
=𝑅𝑖 is an MRD contest. Thus, we obtain 

the following corollary:

Corollary 4.3. Let 𝑖 consist of multi-prize contests 𝐶𝑖 under which a pure-strategy symmetric effort-exerting equilibria for the contestants 
exist. Then, each designer choosing the MRD contest where 𝑠= 1 and 𝑅1

𝑖
=𝑅𝑖 is an equilibrium of the contest competition game.

Clark and Riis (1998) show that a sufficient condition for the existence of pure-strategy symmetric effort-exerting equilibrium 
is 𝜏 ≤ 𝑘∕(𝑘 − 1) and 𝑠 < (1 − 1

𝑒 )𝑘 ≈ 0.632𝑘. This means that the total prize is not split too finely (at most ≈63% of the contestants 
may win). Clark and Riis (1998)[page 613] explain: “The typical case where a symmetric equilibrium does not exist occurs when the 
prize-distribution has much weight at the end and at the beginning, and very little in the middle. The heavy prize mass at the end 
dampens the incentive to contribute, and may lead to a very low level of rent seeking”. In other words, their sufficient conditions 
are meant to prevent extreme settings where low-quality submissions receive a relatively high prize (they describe, as an example, a 
case where there are ten contestants, nine prizes, and the last prize exceeds 22% of the total sum of prizes).

Indeed, such cases do not seem to be prevalent in reality. Even in cases where societal norms require awarding multiple prizes 
(e.g., contests for academic grants, promotions at work places), in reality, the number of prizes rarely exceeds 50% of the number of 
participants. This may be since it is infeasible or too costly for the designer to identify and rank all the losers, or simply because the 
same societal norms mandate an upper bound on the number of winners (e.g., an academic journal with an acceptance ratio of 63% 
will probably be perceived as a lower rank journal).

Regardless of the prize structure, a larger 𝜏 always gives a larger utility to a designer in the single-contest setting (Clark and Riis, 
1998). Therefore, if both 𝜏 and the prize structures can be varied by the designers, incorporating the sufficient condition above, we 
obtain the following:

Corollary 4.4. Let 𝑖 consist of multi-prize contests 𝐶𝑖 with adjustable parameter 𝜏 that satisfy: 0 < 𝜏 ≤ 𝑛∕(𝑛 − 1), and for each 𝑘 ≥ 2 the 
number of divided prizes is at most 𝑠 < 0.632𝑘. Then, each designer choosing the MRD contest where 𝑠 = 1, 𝑅1

𝑖
= 𝑅𝑖, and 𝜏 is the largest 

possible parameter the designer can choose, is an equilibrium of the contest competition game.

12 Azmat and Möller (2009) consider a similar model but assume that designers choose prize structures before knowing the number of contestants. We allow to 
condition the prize structure on the realized number of contestants, which is more general.
13 This is a valid CSF in our model as 𝑓𝑘

𝓁 (𝑒1, ..., 𝑒𝑘) specifies the expected fraction of the total prize contestant 𝓁 wins. For the prize structures described here, 
𝑓𝑘
𝓁 (𝑒1, ..., 𝑒𝑘) = (𝜋1𝑅1

𝑖
+⋯+ 𝜋𝑠𝑅

𝑠
𝑖
)∕𝑅𝑖 where 𝜋𝑗 is the probability that 𝓁 wins the 𝑗 ’th prize.
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5. Welfare optimality

Throughout this section, let 𝑪 = (𝐶1,… ,𝐶𝑚) be a tuple of contests. Denote the sum of designers’ expected utilities (designers’ 
welfare), the sum of contestants’ expected utilities (contestants’ welfare), and their sum (social welfare) by

𝑊𝐷(𝑪) =
𝑚 ∑
𝑖=1 

𝑢𝑖(𝑪), 𝑊𝐶 (𝑪) = 𝑛

𝑚 ∑
𝑖=1 

𝑝𝑖𝛽(𝐶𝑖, 𝑝𝑖), 𝑊𝑆 (𝑪) =𝑊𝐷(𝑪) +𝑊𝐶 (𝑪)

where 𝑝𝑖 = 𝑝𝑖(𝑪). By the equilibrium condition (Claim 2.1) we have 𝛽(𝐶𝑖, 𝑝𝑖) = 𝛽(𝐶𝑗, 𝑝𝑗 ) for all 𝑖, 𝑗 ∈ Supp(𝑪). Denote this constant by 
𝑢𝑐(𝑪). This is a contestant’s expected utility in any contest in which she participates with positive probability. Note that by definition 
𝑝𝑖 = 0 for any 𝑖 ∉ Supp(𝑪), so 

∑
𝑖∈Supp(𝑪) 𝑝𝑖 =

∑𝑚
𝑖=1 𝑝𝑖 = 1. As a result,

𝑊𝐶 (𝑪) = 𝑛

𝑚 ∑
𝑖=1 

𝑝𝑖𝛽(𝐶𝑖, 𝑝𝑖) = 𝑛
∑

𝑖∈Supp(𝑪)
𝑝𝑖𝛽(𝐶𝑖, 𝑝𝑖) = 𝑛

∑
𝑖∈Supp(𝑪)

𝑝𝑖𝑢𝑐(𝑪) = 𝑛𝑢𝑐(𝑪).

For 𝑊𝑆 (𝑪), note that whenever at least one contestant participates in contest 𝑖, the sum of expected utilities of designer 𝑖 and the 
participants in that contest equals 𝑅𝑖. Define the random variables 𝑘1, ..., 𝑘𝑚 as the number of contestants in contests 𝐶1,… ,𝐶𝑚. We 
can rewrite 𝑊𝑆 (𝑪):

𝑊𝑆 (𝑪) =E𝑘1,...,𝑘𝑚

[
𝑚 ∑
𝑖=1 

𝑅𝑖(1[𝑘𝑖≥1] + 𝛼𝑖1[𝑘𝑖=0])

]

=
𝑚 ∑
𝑖=1 

𝑅𝑖E𝑘𝑖∼Bin(𝑛,𝑝𝑖)

[
1[𝑘𝑖≥1] + 𝛼𝑖1[𝑘𝑖=0]

]
=

𝑚 ∑
𝑖=1 

𝑅𝑖E𝑘𝑖∼Bin(𝑛,𝑝𝑖)

[
1 − (1 − 𝛼𝑖)1[𝑘𝑖=0]

]
=

𝑚 ∑
𝑖=1 

𝑅𝑖

[
1 − (1 − 𝛼𝑖)(1 − 𝑝𝑖(𝑪))𝑛

]
. (13)

We show that the social welfare of the equilibria in Theorem 3.1 is optimal in several natural cases:

Theorem 5.1. Consider a contest competition game 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑚𝑖=1, (𝑖)
𝑚
𝑖=1) with some 𝑇𝑖 ∈MRD(𝑖) that satisfies MDU. Assume that 

the contest designers value the reward in the same way: 𝛼1 = … = 𝛼𝑚 = 𝛼 ∈ [0,1). Then the equilibrium (𝑇1,… , 𝑇𝑚) maximizes the social 
welfare 𝑊𝑆 in each one of the following cases:

1. Unrestricted contest design: for all 𝑖, 𝑖 = 𝑅𝑖 .

2. APA is a possible contest: ∀𝑖,APA∈ 𝑖. (APA can be replaced with any other full rent dissipation contest.)

3. A symmetric CCG: 𝑅1 =⋯ =𝑅𝑚 =𝑅 and 1 =⋯ = 𝑚 =  ⊆ 𝑅.

4. An MRD-symmetric CCG: 𝑅1 =⋯ =𝑅𝑚 =𝑅 and MRD(1) =⋯ =MRD(𝑚).

(The Case 2 generalizes Case 1, and Case 4 generalizes Case 3 since every symmetric CCG is also MRD-symmetric.) The proof 
of this theorem is in Appendix D. Example D.2 shows that these conclusions do not always hold outside of the four cases above. 
When contest designers value keeping the reward differently (𝛼1,… , 𝛼𝑚 are different), Theorem 5.1 does not always hold either. 
For intuition, consider the case of two contests, two contestants, and equal rewards, 𝑚 = 𝑛 = 2,𝑅1 = 𝑅2 = 𝑅. By Eq. (13), 𝑊𝑆 (𝑪) =
2𝑅−(1−𝛼1) ⋅𝑅 ⋅ (1− 𝑝1(𝑪))2 − (1−𝛼2) ⋅𝑅 ⋅ (1− 𝑝2(𝑪))2. The last two terms capture the loss in social welfare due to cases where both 
contestants participate in the same contest, while the other contest has no contestants. When 𝛼1 < 𝛼2 (designer 2 values keeping the 
reward more than designer 1), maximizing the social welfare requires the participation probabilities to satisfy 𝑝1(𝑪) > 𝑝2(𝑪), which 
means more contestants participate in contest 1 on average. But this may not necessarily be the case in the contestants’ equilibrium, 
because the contestants’ utilities are agnostic to the 𝛼𝑖 values. Example D.4 shows a concrete example.

Although the total welfare is not always maximized at the equilibria in Theorem 3.1, the contestants’ welfare is always minimized 
at those equilibria, as the next theorem shows.14

Theorem 5.2. Fix some 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑚𝑖=1, (𝑖)
𝑚
𝑖=1). Let 𝑻 = (𝑇1,… , 𝑇𝑚) be one of the equilibria in Theorem 3.1, i.e., 𝑇𝑖 ∈MRD(𝑖) and 

𝑇𝑖 satisfying MDU. Then for any 𝑪 ∈ 1 ×⋯ × 𝑚, 𝑊𝐶 (𝑻 ) ≤𝑊𝐶 (𝑪).

Proof. Let �̃�𝑖 = 𝑝𝑖(𝑻 ) and 𝑝𝑖 = 𝑝𝑖(𝑪). We assume without loss of generality 𝑝1 > 0 (i.e. 1 ∈ Supp(𝑪)). Then 𝑢𝑐(𝑪) = 𝛽(𝐶1, 𝑝1).

14 Designers’ PO does not immediately imply minimal contestants’ welfare since (1) the game is not constant-sum as 𝑊𝑆 (𝑪) depends on 𝑝𝑖 ’s and (2) PO outcomes 
need not necessarily maximize the aggregate designers’ utility.
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If 𝑝1 ≤ �̃�1, then �̃�1 > 0, which implies 𝑢𝑐 (𝑻 ) = 𝛽(𝑇1, �̃�1). Since 𝑇1 has monotonically decreasing utility, we have 𝛽(𝑇1, �̃�1) ≤ 𝛽(𝑇1, 𝑝1)
by Claim 2.3. Since 𝑇1 is also the maximal rent dissipation contest of 1, we get 𝛽(𝑇1, 𝑝1) ≤ 𝛽(𝐶1, 𝑝1) by Claim 2.4. These inequalities 
together yield

𝑢𝑐(𝑻 ) = 𝛽(𝑇1, �̃�1) ≤ 𝛽(𝑇1, 𝑝1) ≤ 𝛽(𝐶1, 𝑝1) = 𝑢𝑐(𝑪).

Otherwise 𝑝1 > �̃�1, then there exists 𝑖 ∈ {2,… ,𝑚} such that �̃�𝑖 > 𝑝𝑖. Note that this implies �̃�𝑖 > 0, so 𝑢𝑐(𝑻 ) = 𝛽(𝑇𝑖, �̃�𝑖), and,

𝑢𝑐(𝑻 ) = 𝛽(𝑇𝑖, �̃�𝑖)
𝑇𝑖 has MDU, Claim 2.3

≤ 𝛽(𝑇𝑖, 𝑝𝑖)
𝑇𝑖∈MRD(𝑖), Claim 2.4

≤ 𝛽(𝐶𝑖, 𝑝𝑖)
𝑝1>0, Claim 2.1

≤ 𝛽(𝐶1, 𝑝1) = 𝑢𝑐(𝑪).

In either case we would get 𝑢𝑐 (𝑻 ) ≤ 𝑢𝑐(𝑪), hence 𝑊𝐶 (𝑻 ) = 𝑛𝑢𝑐 (𝑻 ) ≤ 𝑛𝑢𝑐(𝑪) =𝑊𝐶 (𝑪). □

Theorems 5.1 and 5.2 together immediately imply:

Corollary 5.3. Consider a contest competition game 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑚𝑖=1, (𝑖)
𝑚
𝑖=1) with some 𝑇𝑖 ∈MRD(𝑖) satisfying MDU. The equilibrium 

(𝑇1,… , 𝑇𝑚) maximizes the designers’ welfare 𝑊𝐷 under the assumptions of Theorem 5.1.

Thus, for example, (APA,… ,APA) maximizes the designers’ welfare and minimizes the contestants’ welfare in the case of unre-

stricted contest design, if contest designers value the reward in the same way.

6. Discussion

This paper studies a complete-information competition game among contest designers. First, each designer chooses a contest. 
Second, each contestant chooses (possibly in a random way) one contest to participate in. Third, a symmetric equilibrium outcome is 
realized in each contest (contestants choose effort levels; the reward is allocated to them based on their realized efforts). The resulting 
utility of each contest designer is the sum of efforts invested in their respective contests. The resulting utility of each contestant is 
the reward she receives minus the effort she invests.

Our main results characterize a certain type of contests that form an equilibrium (and may even be dominant) in this game. These 
equilibria are Pareto-optimal for the contest designers. Under natural conditions, these are the only possible equilibria. In addition, 
these equilibria maximize social welfare (while minimizing the contestants’ aggregate welfare) when designers are unrestricted in 
their choice of a contest, or when they are all restricted in the same way. Our results yield several conclusions regarding Tullock 
contests. For example, if contest designers are restricted to choosing a Tullock contest with some parameter 𝜏 then any Tullock contest 
with 𝜏 ≥ 2 (e.g., APA where 𝜏 =∞) is a dominant contest for every designer.

The bottom line of our formal analysis is that under our assumptions a contest designer can ignore competition and focus solely on 
increasing the effort of the contestants that arrive to the contest. This conclusion advances the state-of-art as, a-priori, the contest com-

petition game can yield outcomes that depend on the number of designers, contestants, and equilibrium selection. Game-theoretically, 
our conclusion is compelling as it is supported by Pareto-optimality and even by dominant strategies.

Clearly, each theory has its underlying assumptions and we aim to give the most general conditions under which our conclusions 
hold. In the following discussion, we explore which assumptions are necessary and which can be relaxed for the above to still hold. 
This gives both a prescription for designers as well as a basis on which further research to study alternative assumptions can develop. 
For example, we show that if the assumption of symmetric contestants is relaxed then our conclusions no longer hold. Examining and 
relaxing our assumptions are interesting future directions, as we next discuss.

The participation model: We discuss four assumptions. First, one may assume that contestants cannot observe the total number of 
contestants in the contest they chose which may be the reality in large electronic/online contests (but is less realistic in small physical 
contests). Second, a contestant may be able to participate in more than one contest simultaneously, e.g., in up to some fixed maximal 
number of contests. Another option is to study a budgeted participation model where the total effort of each contestant could be 
split among several contests (see e.g. Lavi and Shiran-Shvarzbard (2020)). Third, if we allow contestants to choose an asymmetric 
equilibrium in response to the designers’ contest success functions, our results no longer hold. Example ii.1 in the online appendix 
shows that (APA,APA) is not an equilibrium when we have two Tullock contests and three contestants that may choose an asymmetric 
equilibrium for their participation probabilities. It can be interesting to understand the asymmetric case as well. Another interesting 
option is to consider an endogenous population of designers, e.g., Lazear and Rosen (1981) assumes infinitely many designers (in 
their setup, firms) implying that in a competitive equilibrium designer utility is zero.

Asymmetric and/or stochastic costs of effort: Our approach relies critically on the assumption that contestants have a symmetric 
and fixed unit cost of effort (normalized to 1). This enables symmetric equilibrium strategies for the contestants and also makes the 
single contest game a constant-sum game. The constant-sum property allows us to relate the designer’s utility with the contestants’ 
utilities which can then be characterized by the equilibrium condition for the contestants. When contestants have asymmetric fixed 
costs of effort or stochastic private costs of effort, the single contest game between a designer and 𝑘 ≥ 1 contestants is not constant-sum 
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in general, so the argument in this paper cannot be applied directly. Another obstacle to analyzing asymmetric and/or stochastic costs 
of effort is the lack of explicit characterization of contestants’ utilities in a contest (even in a single Tullock contest) in those settings. 
We give a concrete example in Section iii of the online appendix. It shows that the conclusion that APA contests form an equilibrium 
no longer holds when contestants have asymmetric costs of effort. The symmetry assumption is also an important ingredient in the 
literature on Tullock contests and all-pay auctions: e.g., neither of these two extracts full surplus with asymmetric contestants, even 
under complete information. Section vi in the online appendix gives an example where contestants have private stochastic costs of 
efforts and our conclusion that the optimal contests in the monopoly setting prevail in the competition setting still holds. This is 
a special example that satisfies the constant-sum property, so the argument in this paper applies. However, in general, the main 
argument in the example does not apply. Whether our conclusion holds in a more general incomplete-information setting is open.

Non-linear cost of effort: We assumed linear cost of effort for contestants. One main interesting direction to relax this assumption 
is non-linear cost of effort. Section iv of the online appendix shows an example where contestants have convex costs of effort and 
the (unique) MRD contest is no longer an equilibrium. Specifically, in the example, contestants have costs of effort 𝑐(𝑒) = 𝑒𝑏 with 
𝑏 = 3. There are two contest designers that can choose some Tullock contest with 𝜏 ∈ [0,6]. Within this parameterized class of Tullock 
contests, 𝜏 = 6 is the unique MRD contest. However, the outcome (𝜏 = 6, 𝜏 = 6) is no longer a contestant-symmetric SPE. It can be 
interesting to further investigate how contestants’ costs of effort affect the qualitative conclusions of this work.

Non-MDU contests: When the prize structure can depend on the number of participants, e.g., choosing a different Tullock contest 
depending on the number of participants, the MDU property can be violated, see e.g., Example 3.2. This opens the possibility of new 
“exotic” contests with new types of equilibria that do not fall within Theorem 3.1. However, as we show in Section 2.5, it is rather 
straight-forward to extend an existing contests class to contain an MRD+MDU contest, using the existing contests’ formats. 

Reservation prices and the case of one contestant: Our results rely on the assumption that the reward is fully allocated and 
therefore allocated for free when a single contestant shows up at some contest. One may consider setting a threshold on minimal 
effort, but there are several issues with such an approach, as follows.

First, in online crowdsourcing contests, it is typical that the number of contestants is significantly larger than the number of 
contests.15 In such a case, the probability that only one contestant shows up to a contest is very low. Therefore, this case seems 
insignificant to the contest designer. We conjecture that this case would not significantly affect our conclusion; this is supported by 
some preliminary analysis in the Appendix, see details below.

Second, when adding a threshold on effort, the contest designer needs to accurately observe the effort, which may not be always 
possible (this is unlike auctions where bids are monetary and fully observable). The difficulty of observing effort is in fact a key 
motivation in Lazear and Rosen (1981)’s rank-order tournament model. In reality, if the designer is not an expert it is hard for her to 
evaluate the effort invested in a submission. This seems especially true if there is only one contestant since in this case, a non-expert 
contest designer is not able to compare the submission to other submissions and therefore evaluating the effort it took to compose the 
submission is even harder. Thresholds on effort are not part of common contest design models. For example, in the Tullock contest 
model the prize must always be allocated regardless of the observability parameter. The difficulty in accurately evaluating effort, as 
described above, is one justification for that.

Third, we note that whether a contest designer can credibly commit to withholding the prize if the effort is lower than the threshold 
is questionable. If the contest designer decides not to hand out the full reward initially announced, after she received a submission, 
she may face some legal issues challenging her to prove that not enough effort was invested. In addition, the contest designer may 
be tempted to keep the reward even if the effort involved in creating the submission was marginally above the threshold. It therefore 
might be simpler to always hand out the reward in full, especially when the chance that exactly one contestant arrives at the contest 
is very low.

Fourth, in Section v of the online appendix we further discuss the possibility of allowing the designer to set some threshold 𝑡 when 
there is only one participant. We show an example in which, when there are 𝑛 contestants, a designer sets a threshold of (1 − 1∕𝑛)𝑅𝑖

in equilibrium. Thus, neither setting 𝑡 = 0 (allocating the item for free) nor setting 𝑡 =𝑅𝑖 (resulting in zero utility for the contestant) 
is an equilibrium. Notice that, in this case, setting 𝑡 =𝑅𝑖 corresponds to choosing the maximal rent dissipation contest, and therefore 
our conclusion that MRD contests form an equilibrium no longer holds. Nevertheless, as 𝑛 increases the threshold 𝑡 = (1−1∕𝑛)𝑅𝑖 →𝑅𝑖

approaches that of an MRD contest.

Previous literature, in particular Burdett et al. (2001), considers reservation prices which they term posted prices as it is in an 
auction context. However, their space of contest design allows only for a certain restricted type of posted price contests (in particular 
only posted prices that do not depend on the number of contestants) and does not allow for any other type of contest including for 
example general posted prices and/or Tullock contests. An interesting extension of our work can be to combine it with a generalization 
of the approach of Burdett et al. (2001) and consider a contest design space that allows both fully allocating contests as well as general 
posted prices. In the online appendix we observe that neither our results nor the results of Burdett et al. (2001) apply and hence the 
competition equilibria with such a design space remain an open question.

Thus, we view this issue as an important conclusion that stems from our paper. Our results should motivate future studies of 
competition among contests to carefully generalize the contest design space.

15 For example, in KAGGLE (https://www.kaggle.com/general/14510), which uses contests to solve data science challenges, there are over 8 million users (Wikipedia, 
2022a), but currently only about 20 active contests (according to Kaggle’s open-source client).

https://www.kaggle.com/general/14510
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Appendix A. Missing proofs from Section 2

A.1. Proof of Claim 2.3

Claim 2.3. If 𝐶𝑖 has MDU and 𝑝 < 𝑝′, then 𝛽(𝐶𝑖, 𝑝) > 𝛽(𝐶𝑖, 𝑝′).

Proof. By definition,

𝛽(𝐶𝑖, 𝑝) = (1 − 𝑝)𝑛−1𝑅𝑖 +
𝑛−1 ∑
𝑘=1

(
𝑛− 1
𝑘 

)
𝑝𝑘(1 − 𝑝)𝑛−1−𝑘𝛾𝐶𝑖 (𝑘+ 1)

= (1 − 𝑝)𝑛−1
𝑅𝑖

2 
+ (1 − 𝑝)𝑛−1

𝑅𝑖

2 
+

𝑛−1 ∑
𝑘=1

(
𝑛− 1
𝑘 

)
𝑝𝑘(1 − 𝑝)𝑛−1−𝑘𝛾𝐶𝑖 (𝑘+ 1).

Let

�̃�(𝑘+ 1) =

{
𝑅𝑖
2 𝑘 = 0;
𝛾𝐶𝑖 (𝑘+ 1) otherwise.

We can write 𝛽(𝐶𝑖, 𝑝) = (1 − 𝑝)𝑛−1 𝑅𝑖2 + E𝑘∼Bin(𝑛−1,𝑝)[�̃�(𝑘+ 1)]. We recall that 𝛾𝐶𝑖 (𝑘), the utility of a contestant in a contest with 𝑘
contestants, is at most 𝑅𝑖

𝑘 ; in particular, 𝛾𝐶𝑖 (2) ≤
𝑅𝑖
2 . Therefore, the sequence

�̃�(1) =
𝑅𝑖

2 
≥ �̃�(2) ≥⋯ ≥ �̃�(𝑛)

is decreasing under the assumption that 𝐶𝑖 has monotonically decreasing utility. Due to the first order stochastic dominance of a 
binomial distribution with a higher 𝑝 parameter over another binomial distribution with a lower 𝑝 parameter (see e.g., Wolfstetter 
(1999)), we have

E𝑘∼Bin(𝑛−1,𝑝)[�̃�(𝑘+ 1)] ≥E𝑘∼Bin(𝑛−1,𝑝′)[�̃�(𝑘+ 1)]

which implies

𝛽(𝐶𝑖, 𝑝) = (1 − 𝑝)𝑛−1
𝑅𝑖

2 
+E𝑘∼Bin(𝑛−1,𝑝′)[�̃�(𝑘+ 1)]

> (1 − 𝑝′)𝑛−1
𝑅𝑖

2 
+E𝑘∼Bin(𝑛−1,𝑝′)[�̃�(𝑘+ 1)] = 𝛽(𝐶𝑖, 𝑝′). □

Appendix B. Missing proofs from Section 3

Throughout this section we assume that 𝑖 ⊆ 𝑅𝑖
contains a maximal rent dissipation contest with monotonically decreasing 

utility, which we denote by 𝑇𝑖 ∈MRD(𝑖).

B.1. Analysis of the contest competition game: proof of Theorem 3.1

Theorem 3.1 immediately follows from the following lemma, which is our main technical lemma. It shows that for any designer 
𝑖, choosing 𝑇𝑖 is always a best response if other designers choose contests with monotonically decreasing utility.
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Lemma B.1. Fix any 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑚𝑖=1, (𝑖)
𝑚
𝑖=1) where for any 𝑖, 𝑖 ⊆ 𝑅𝑖 contains a maximal rent dissipation contest 𝑇𝑖 that has 

monotonically decreasing utility. Fix some designer 𝑖 and for all 𝑗 ≠ 𝑖 fix some �̂�𝑗 ∈ 𝑗 with monotonically decreasing utility. Then 
𝑢𝑖(𝑇𝑖, �̂�−𝑖) ≥ 𝑢𝑖(𝐶𝑖, �̂�−𝑖) for all 𝐶𝑖 ∈ 𝑖.

We prove a useful claim before proving the lemma. The claim is about the change of contestants’ participation equilibrium when 
a designer switches her contest. Intuitively, we expect that with all other contests left unchanged, a designer (say, designer 1) setting 
her contest to have less rent dissipation results in higher participation (properties (a) and (b) in the next claim). A more surprising 
property is that if participants are unwilling to participate in contest 1 under maximal rent dissipation, then no other contest will be 
lucrative enough to attract them (property (c)).

Claim B.1. Following the notations in Lemma B.1, we let (�̂�1, �̂�2,… , �̂�𝑚) = 𝒑(𝑇1, �̂�2,… , �̂�𝑚), and for any 𝐶1 ∈ 1, let (𝑝1, 𝑝2,… , 𝑝𝑚) =
𝒑(𝐶1, �̂�2,… , �̂�𝑚). Then,

(a) 𝑝1 ≥ �̂�1; 
(b) 𝑝𝑗 ≤ �̂�𝑗 for all 𝑗 ∈ {2,… ,𝑚}; 
(c) �̂�𝑖 = 0 ⟹ 𝑝𝑖 = 0 for all 𝑖 ∈ {1,2,… ,𝑚}.

Proof of (a). Assume by contradiction �̂�1 > 𝑝1 ≥ 0, then there is some designer 𝑗 ≠ 1 with �̂�𝑗 < 𝑝𝑗 , because the probabilities sum to 
one. We now have the contradiction:

𝛽(𝑇1, �̂�1) ≥ (�̂�1 > 0,Claim 2.1)

𝛽(�̂�𝑗 , �̂�𝑗 ) > (�̂�𝑗 < 𝑝𝑗 , �̂�𝑗has MDU, Claim 2.3)

𝛽(�̂�𝑗 , 𝑝𝑗 ) ≥ (𝑝𝑗 > 0,Claim 2.1)

𝛽(𝐶1, 𝑝1) ≥ (𝑇1 ∈MRD(1), Claim 2.4)

𝛽(𝑇1, 𝑝1) > (𝑝1 < �̂�1, 𝑇1has MDU, Claim 2.3)

𝛽(𝑇1, �̂�1).

Proof of (b). From (a) we know

𝑚 ∑
𝑗=2 

�̂�𝑗 = 1 − �̂�1 ≥ 1 − 𝑝1 =
𝑚 ∑
𝑗=2 

𝑝𝑗 . (14)

Assume by contradiction that for some 𝑗0 ∈ {2,3,… ,𝑚}, 𝑝𝑗0 > �̂�𝑗0 ≥ 0, then by (14) there must exist 𝑗 ∈ {2,3,… ,𝑚} with 𝑗 ≠ 𝑗0 such 
that �̂�𝑗 > 𝑝𝑗 ≥ 0. We therefore have the contradiction

𝛽(�̂�𝑗 , 𝑝𝑗 ) > (𝑝𝑗 < �̂�𝑗 , �̂�𝑗has MDU, Claim 2.3)

𝛽(�̂�𝑗 , �̂�𝑗 ) ≥ (�̂�𝑗 > 0,Claim 2.1)

𝛽(�̂�𝑗0 , �̂�𝑗0 ) > (�̂�𝑗0 < 𝑝𝑗0 , �̂�𝑗0has MDU, Claim 2.3)

𝛽(�̂�𝑗0 , 𝑝𝑗0 ) ≥ (𝑝𝑗0 > 0,Claim 2.1)

𝛽(�̂�𝑗 , 𝑝𝑗 ).

Proof of (c). For any 𝑖∈ {2,… ,𝑚}, (c) is an immediate corollary of (b). Consider 𝑖 = 1, and assume by contradiction that 𝑝1 > �̂�1 = 0. 
Then there is some designer 𝑗 ≠ 1 with 𝑝𝑗 < �̂�𝑗 because the probabilities sum to one. We then have the contradiction

𝛽(𝑇1, �̂�1) = (�̂�1 = 0)

𝛾𝑇1 (1) = (By definition)

𝑅1 ≥ (𝛾𝐶1
(𝑘+ 1) ≤

𝑅1
𝑘+ 1

≤𝑅1by Eq. (1))

E𝑘∼Bin(𝑛−1,𝑝1)

[
𝛾𝐶1

(𝑘+ 1)
]
=

𝛽(𝐶1, 𝑝1) ≥ (𝑝1 > 0,Claim 2.1)

𝛽(�̂�𝑗 , 𝑝𝑗 ) > (𝑝𝑗 < �̂�𝑗 , �̂�𝑗has MDU, Claim 2.3)

𝛽(�̂�𝑗 , �̂�𝑗 ) ≥ (�̂�𝑗 > 0,Claim 2.1)

𝛽(𝑇1, �̂�1). □
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Proof of Lemma B.1. Without loss of generality, we only prove it for designer 𝑖 = 1. Suppose that when designer 1 chooses 𝑇1 and 
all other designers 𝑗 choose some contests �̂�𝑗 with monotonically decreasing utility, contestants choose participation probabilities 
(�̂�1, �̂�2,… , �̂�𝑚) = 𝒑(𝑇1, �̂�2,… , �̂�𝑚). According to Claim 2.2, the expected utility of designer 1, denoted by �̂�1, equals

�̂�1 = 𝑢1(𝑇1, �̂�2,… , �̂�𝑚) =𝑅1
[
1 − (1 − �̂�1)𝑛(1 − 𝛼1)

]
− 𝑛�̂�1𝛽(𝑇1, �̂�1). (15)

When designer 1 switches to any other contest 𝐶1 ∈ 1, letting (𝑝1, 𝑝2,… , 𝑝𝑚) = 𝒑(𝐶1, �̂�2,… , �̂�𝑚), the expected utility of designer 1 
becomes

𝑢1 = 𝑢1(𝐶1, �̂�2,… , �̂�𝑚) =𝑅1
[
1 − (1 − 𝑝1)𝑛(1 − 𝛼1)

]
− 𝑛𝑝1𝛽(𝐶1, 𝑝1). (16)

Our goal is to show that �̂�1 ≥ 𝑢1.

If �̂�1 = 0, then by (c) of Claim B.1 we have 𝑝1 = 0 and hence �̂�1 = 𝑢1 = 𝛼1𝑅1. The conclusion holds.

Now assume �̂�1 > 0. If �̂�𝑗 = 0 for all 𝑗 ∈ {2,… ,𝑚}, then by (c) of Claim B.1 we have 𝑝𝑗 = 0 for all 𝑗. This implies �̂�1 = 𝑝1 = 1 and 
hence �̂�1 =𝑅1 − 𝑛𝛾𝑇1 (𝑛) and 𝑢1 =𝑅1 − 𝑛𝛾𝐶1

(𝑛). Since 𝛾𝑇1 (𝑛) ≤ 𝛾𝐶1
(𝑛) by the assumption that 𝑇1 has maximal rent dissipation, we have 

�̂�1 ≥ 𝑢1.

Now we consider the case where �̂�𝑗 > 0 for some 𝑗 ∈ {2,… ,𝑚}. Because each contestant participates in both 𝑇1 and �̂�𝑗 with 
positive probability, by equilibrium condition (Claim 2.1), we must have

𝛽(𝑇1, �̂�1) = 𝛽(�̂�𝑗 , �̂�𝑗 ).

By (a) of Claim B.1, 𝑝1 ≥ �̂�1 > 0, so each contestant participates in 𝐶1 with positive probability, and by equilibrium condition 
(Claim 2.1),

𝛽(𝐶1, 𝑝1) ≥ 𝛽(�̂�𝑗 , 𝑝𝑗 ).

According to Claim 2.3, 𝛽(�̂�𝑗 , 𝑝) is a monotonically decreasing function of 𝑝, and by (b) of Claim B.1, 𝑝𝑗 ≤ �̂�𝑗 . Therefore, we have 
𝛽(�̂�𝑗 , 𝑝𝑗 ) ≥ 𝛽(�̂�𝑗 , �̂�𝑗 ) and hence

𝛽(𝐶1, 𝑝1) ≥ 𝛽(�̂�𝑗 , 𝑝𝑗 ) ≥ 𝛽(�̂�𝑗 , �̂�𝑗 ) = 𝛽(𝑇1, �̂�1). (17)

Plugging (17) into (16), we get

𝑢1 ≤𝑅1[1 − (1 − 𝑝1)𝑛(1 − 𝛼1)] − 𝑛𝑝1𝛽(𝑇1, �̂�1).

Now we define function

𝑓 (𝑝) =𝑅1[1 − (1 − 𝑝)𝑛(1 − 𝛼1)] − 𝑛𝑝𝛽(𝑇1, �̂�1). (18)

We take its derivative:

𝑓 ′(𝑝) = 𝑛𝑅1(1 − 𝑝)𝑛−1(1 − 𝛼1) − 𝑛𝛽(𝑇1, �̂�1)

= 𝑛𝑅1(1 − 𝑝)𝑛−1(1 − 𝛼1) − 𝑛

𝑛−1 ∑
𝑘=0

(
𝑛− 1
𝑘 

)
�̂�𝑘1(1 − �̂�1)𝑛−1−𝑘𝛾𝑇1 (𝑘+ 1)

= 𝑛𝑅1(1 − 𝑝)𝑛−1(1 − 𝛼1)
⏟ ⏟ ⏟

≤1 

− 𝑛(1 − �̂�1)𝑛−1𝑅1 − 𝑛

𝑛−1 ∑
𝑘=1

(
𝑛− 1
𝑘 

)
�̂�𝑘1(1 − �̂�1)𝑛−1−𝑘𝛾𝑇1 (𝑘+ 1)

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0 

≤ 𝑛𝑅1(1 − 𝑝)𝑛−1 − 𝑛𝑅1(1 − �̂�1)𝑛−1.

For 𝑝 > �̂�1, we have (1 − 𝑝)𝑛−1 < (1 − �̂�1)𝑛−1, so 𝑓 ′(𝑝) < 0. Thus, 𝑓 (𝑝) is monotonically decreasing in the range [�̂�1,1], which implies

�̂�1 = 𝑓 (�̂�1) ≥ 𝑓 (𝑝1) ≥ 𝑢1, (19)

concluding the proof.



Games and Economic Behavior 153 (2025) 268–293

287

X. Deng, Y. Gafni, R. Lavi et al. 

B.2. Full characterization of equilibria for MDU contests: proof of Theorem 3.3

Additional properties of contestants’ participation game. The following two claims use the notation and assumptions of 
Lemma B.1, specifically, we fix a contest competition game 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑚𝑖=1, (𝑖)

𝑚
𝑖=1), where for every 𝑖, MRD(𝑖) contains at 

least one contest 𝑇𝑖, and 𝑇𝑖 has monotonically decreasing utility. The first claim and its proof are similar to item (c) of Claim B.1.16

Claim B.2. Let �̃�𝑖 = 𝑝𝑖(𝑇1,… , 𝑇𝑚). For any strategy profile (𝐶1,… ,𝐶𝑚) ∈ 1 ×⋯×𝑚, let 𝑝𝑖 = 𝑝𝑖(𝐶1,… ,𝐶𝑚). Then for any 𝑖∈ {1,… ,𝑚}, 
�̃�𝑖 = 0 implies 𝑝𝑖 = 0.

Proof. Assume by contradiction there exists 𝑖 such that �̃�𝑖 = 0 and 𝑝𝑖 > 0. Then there exists 𝑗 ≠ 𝑖 such that �̃�𝑗 > 𝑝𝑗 . By Claim 2.1

we have 𝛽(𝑇𝑗 , �̃�𝑗 ) ≥ 𝛽(𝑇𝑖, �̃�𝑖) = 𝑅𝑖 and 𝛽(𝐶𝑖, 𝑝𝑖) ≥ 𝛽(𝐶𝑗, 𝑝𝑗 ). By Claim 2.4 (since 𝑇𝑗 ∈ MRD(𝑗 )), we have 𝛽(𝐶𝑗, 𝑝𝑗 ) ≥ 𝛽(𝑇𝑗 , 𝑝𝑗 ). By 
Claim 2.3, since 𝑇𝑗 is a MDU contest and �̃�𝑗 > 𝑝𝑗 , we have 𝛽(𝑇𝑗 , 𝑝𝑗 ) > 𝛽(𝑇𝑗 , �̃�𝑗 ). Finally, it is obvious that 𝛽(𝐶𝑖, 𝑝𝑖) ≤ 𝑅𝑖. Combining 
these inequalities, we get

𝛽(𝑇𝑗 , �̃�𝑗 ) ≥ 𝛽(𝑇𝑖, �̃�𝑖) =𝑅𝑖 ≥ 𝛽(𝐶𝑖, 𝑝𝑖) ≥ 𝛽(𝐶𝑗, 𝑝𝑗 ) ≥ 𝛽(𝑇𝑗 , 𝑝𝑗 ) > 𝛽(𝑇𝑗 , �̃�𝑗 ),

which is a contradiction. □

When �̂�−𝑖 are all MDU contests, Lemma B.1 states that 𝑇𝑖 is a dominant contest for designer 𝑖. Thus, if we have 𝑢𝑖(𝑇𝑖, �̂�−𝑖) =
𝑢𝑖(𝐶𝑖, �̂�−𝑖) for some 𝐶𝑖 ∈ 𝑖, then 𝐶𝑖 is a best response to �̂�−𝑖. The next claim shows that, in this case, the equilibrium outcome in 
the two contestants’ participation games (𝑇𝑖, �̂�−𝑖) and (𝐶𝑖, �̂�−𝑖) is identical.

Claim B.3. If 𝑢𝑖(𝑇𝑖, �̂�−𝑖) = 𝑢𝑖(𝐶𝑖, �̂�−𝑖) for some 𝐶𝑖 ∈ 𝑖, then �̂�𝑖 = 𝑝𝑖 and 𝛽(𝑇𝑖, �̂�𝑖) = 𝛽(𝐶𝑖, 𝑝𝑖), where �̂�𝑖 = 𝑝𝑖(𝑇𝑖, �̂�−𝑖) and 𝑝𝑖 = 𝑝𝑖(𝐶𝑖, �̂�−𝑖).

Proof. Without loss of generality, we only prove it for contest designer 𝑖 = 1. Following the notation in Section B.1 (Eq. (15), Eq. (16)

and Eq. (18)), define

�̂�1 = 𝑢1(𝑇1, �̂�−1) =𝑅1
[
1 − (1 − 𝛼1)(1 − �̂�1)𝑛

]
− 𝑛�̂�1𝛽(𝑇1, �̂�1),

𝑢1 = 𝑢1(𝐶1, �̂�−1) =𝑅1
[
1 − (1 − 𝛼1)(1 − 𝑝1)𝑛

]
− 𝑛𝑝1𝛽(𝐶1, 𝑝1),

𝑓 (𝑝) =𝑅1[1 − (1 − 𝛼1)(1 − 𝑝)𝑛] − 𝑛𝑝𝛽(𝑇1, �̂�1).

Recall that by the assumption in the statement of the claim we have �̂�1 = 𝑢1. Consider the following three cases:

• If �̂�1 = 0, then by (c) of Claim B.1, 𝑝1 = 0 = �̂�1. And 𝛽(𝑇1, �̂�1) = 𝛽(𝐶1, 𝑝1) =𝑅1.

• If �̂�1 = 1, then by (a) of Claim B.1, 1 ≥ 𝑝1 ≥ �̂�1 = 1 hence 𝑝1 = �̂�1 = 1. Therefore,

𝑅1 − 𝑛𝛽(𝑇1, �̂�1) = �̂�1 = 𝑢1 =𝑅1 − 𝑛𝛽(𝐶1, 𝑝1).

This immediately implies 𝛽(𝑇1, �̂�1) = 𝛽(𝐶1, 𝑝1).
• Otherwise, 0 < �̂�1 < 1, so there exists some 𝑗 ∈ {2,… ,𝑚} such that �̂�𝑗 > 0 and therefore Eq. (19) in the proof of Lemma B.1 holds. 

Furthermore, since �̂�1 = 𝑢1, all the inequalities in (19) become equalities. Thus,

𝑓 (�̂�1) = 𝑓 (𝑝1) = 𝑢1. (20)

By (a) of Claim B.1, 𝑝1 ≥ �̂�1, so by strict monotonicity of 𝑓 (𝑝) in the range 𝑝 ∈ [�̂�1,1], Eq. (20) implies 𝑝1 = �̂�1 and in addition

𝑅1[1 − (1 − 𝛼1)(1 − 𝑝1)𝑛] − 𝑛𝑝1𝛽(𝑇1, �̂�1) = 𝑓 (𝑝1)

= 𝑢1 =𝑅1[1 − (1 − 𝛼1)(1 − 𝑝1)𝑛] − 𝑛𝑝1𝛽(𝐶1, 𝑝1),

which directly implies 𝛽(𝑇1, �̂�1) = 𝛽(𝐶1, 𝑝1) since 𝑝1 = �̂�1 > 0. □

Proof of the “⟹” direction of items 2 and 3 of Theorem 3.3. Under the notation of Theorem 3.3, for every contestant-

symmetric subgame-perfect equilibrium (𝐶1, ...,𝐶𝑚), recall that Supp(𝐶1,… ,𝐶𝑚) = {𝑖 ∶ 𝑝𝑖(𝐶1,… ,𝐶𝑚) > 0}. We defer the proof that 
Supp(𝐶1,… ,𝐶𝑚) = 𝑃 and first prove a useful lemma:

Lemma B.2. 

• If |Supp(𝐶1,… ,𝐶𝑚)| > 1 then for any 𝑖∈ Supp(𝐶1,… ,𝐶𝑚), 𝐶𝑖 ∈MRD(𝑖).

16 We note the differences: (1) here every contest changes, while in Claim B.1 only one contest changes, and (2) here we require all contests to be maximal rent 
dissipation (and MDU), while in Claim B.1 we only require them to be MDU.
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• If Supp(𝐶1,… ,𝐶𝑚) = {𝑖0} then 𝑝𝑖0 (𝐶1,… ,𝐶𝑚) = 1 and 𝛾𝐶𝑖0 (𝑛) = 𝛾𝑇𝑖0
(𝑛).

Proof. Recall that 𝑇𝑖 is a dominant contest and hence a best response to 𝑪−𝑖. Since (𝐶1,… ,𝐶𝑚) is a contestant-symmetric subgame-

perfect equilibrium, 𝐶𝑖 is also a best response. Applying Claim B.3, we get 𝑝𝑖 ∶= 𝑝𝑖(𝐶𝑖,𝑪−𝑖) = 𝑝𝑖(𝑇𝑖,𝑪−𝑖) and

𝛽(𝑇𝑖, 𝑝𝑖) = 𝛽(𝑇𝑖, 𝑝𝑖(𝑇𝑖,𝑪−𝑖)) = 𝛽(𝐶𝑖, 𝑝𝑖(𝐶𝑖,𝑪−𝑖)) = 𝛽(𝐶𝑖, 𝑝𝑖). (21)

By definition

𝛽(𝑇𝑖, 𝑝𝑖) =
𝑛−1 ∑
𝑘=0

(
𝑛− 1
𝑘 

)
𝑝𝑘
𝑖
(1 − 𝑝𝑖)𝑛−1−𝑘𝛾𝑇𝑖 (𝑘+ 1)

= 𝛽(𝐶𝑖, 𝑝𝑖) =
𝑛−1 ∑
𝑘=0

(
𝑛− 1
𝑘 

)
𝑝𝑘
𝑖
(1 − 𝑝𝑖)𝑛−1−𝑘𝛾𝐶𝑖 (𝑘+ 1).

If 𝑝𝑖 = 1, then 𝛽(𝑇𝑖, 𝑝𝑖) = 𝛾𝑇𝑖 (𝑛) = 𝛽(𝐶𝑖, 𝑝𝑖) = 𝛾𝐶𝑖 (𝑛), this corresponds to the second case of the lemma.

Otherwise, for any 𝑖 ∈ {1,… ,𝑚}, 𝑝𝑖 < 1. We prove the first case of the lemma, i.e. for any 𝑖 ∈ Supp(𝐶1,… ,𝐶𝑚), 𝐶𝑖 ∈MRD(𝑖). 
Actually, as 0 < 𝑝𝑖 < 1, 

(𝑛−1
𝑘 
)
𝑝𝑘
𝑖
(1 − 𝑝𝑖)𝑛−1−𝑘 > 0 for every 𝑘 = 0,… , 𝑛− 1. Moreover, 𝑇𝑖 ∈MRD(𝑖) implies 𝛾𝑇𝑖 (𝑘+ 1) ≤ 𝛾𝐶𝑖 (𝑘+ 1) for 

every 𝑘 = 0,… , 𝑛 − 1. As a result, for (21) to hold, we must have 𝛾𝑇𝑖 (𝑘 + 1) = 𝛾𝐶𝑖 (𝑘 + 1) for every 𝑘 = 0,… , 𝑛 − 1, which indicates 
𝐶𝑖 ∈MRD(𝑖). This completes the proof of the lemma. □

Comparing Lemma B.2 with the conclusion of the “ ⟹ ” direction, we are left to prove Supp(𝐶1,… ,𝐶𝑚) = 𝑃 . The Supp(𝐶1,… ,𝐶𝑚) ⊆
𝑃 result is just a direct implication of Claim B.2. We then prove 𝑃 ⊆ Supp(𝐶1,… ,𝐶𝑚). Denote 𝑝𝑖(𝐶1,… ,𝐶𝑚) by 𝑝𝑖 for simplicity. 
Assume towards a contradiction that there exists 𝑖 ∈ {1,… ,𝑚} such that �̃�𝑖 > 𝑝𝑖 = 0. Then there exists 𝑗 ≠ 𝑖 such that 𝑝𝑗 > �̃�𝑗 . Note 
that this implies 𝑝𝑗 > 0. Therefore, by Lemma B.2, either 𝐶𝑗 ∈ MRD(𝑗 ), or 𝑝𝑗 = 1 and 𝛾𝐶𝑗 (𝑛) = 𝛾𝑇𝑗 (𝑛). In either case we have 

𝛽(𝑇𝑗 , 𝑝𝑗 ) = 𝛽(𝐶𝑗, 𝑝𝑗 ). By equilibrium condition (Claim 2.1), 𝛽(𝐶𝑗, 𝑝𝑗 )
(𝑝𝑗>0)
≥ 𝛽(𝐶𝑖, 𝑝𝑖)

(𝑝𝑖=0)= 𝑅𝑖 and 𝛽(𝑇𝑖, �̃�𝑖)
(�̃�𝑖>0)
≥ 𝛽(𝑇𝑗 , �̃�𝑗 ). By Claim 2.3, 

𝛽(𝑇𝑗 , �̃�𝑗 ) > 𝛽(𝑇𝑗 , 𝑝𝑗 ) and 𝑅𝑖 = 𝛽(𝑇𝑖, 𝑝𝑖) > 𝛽(𝑇𝑖, �̃�𝑖). These inequalities together yield

𝛽(𝑇𝑗 , �̃�𝑗 ) > 𝛽(𝑇𝑗 , 𝑝𝑗 ) = 𝛽(𝐶𝑗, 𝑝𝑗 ) ≥ 𝛽(𝐶𝑖, 𝑝𝑖) =𝑅𝑖 = 𝛽(𝑇𝑖, 𝑝𝑖) > 𝛽(𝑇𝑖, �̃�𝑖) ≥ 𝛽(𝑇𝑗 , �̃�𝑗 ),

which is a contradiction. Therefore, we conclude that 𝑝𝑖 = 0 implies �̃�𝑖 = 0 for any 𝑖 ∈ {1,… ,𝑚}. This completes the proof.

Proof of the “⟸” direction of items 2 and 3 of Theorem 3.3. To prove this direction we first assume |𝑃 | > 1. Assume (𝐶1,… ,𝐶𝑚)
is any strategy profile satisfying 𝐶𝑖 ∈MRD(𝑖) for any 𝑖∈ 𝑃 . To prove that it is a contestant-symmetric subgame-perfect equilibrium, 
we only need to show that for any 𝑖, 𝐶𝑖 is designer 𝑖’s best response when the other designers choose 𝑪−𝑖. Note that Lemma B.1 already 
guarantees that for 𝑖 ∈ 𝑃 , 𝐶𝑖 is designer 𝑖’s best response, so we are left to show that this also holds for those 𝑖 ∉ 𝑃 . Assume �̃�𝑖 = 0, 
then for any 𝐶 ′

𝑖
∈ 𝑖, by Claim B.2, 𝑝𝑖(𝐶 ′

𝑖
,𝑪−𝑖) = 0, which implies that designer 𝑖 gets zero utility no matter which 𝐶 ′

𝑖
she chooses. 

So 𝐶𝑖 is indeed one of her best responses. To conclude, 𝐶𝑖 is designer 𝑖’s best response for any 𝑖, which implies that (𝐶1,… ,𝐶𝑚) is a 
contestant-symmetric subgame-perfect equilibrium.

We then assume |𝑃 | = 1. Suppose 𝑃 = {𝑖0}, and assume (𝐶1,… ,𝐶𝑚) is any strategy profile satisfying 𝛾𝐶𝑖0 (𝑛) = 𝛾𝑇𝑖0
(𝑛). We need to 

show that for any 𝑖, 𝐶𝑖 is designer 𝑖’s best response when the other designers choose 𝑪−𝑖. This time Claim B.2 promises that for any 
𝑖 ≠ 𝑖0 and any 𝐶 ′

𝑖
∈ 𝑖, 𝑝𝑖(𝐶 ′

𝑖
,𝑪−𝑖) = 0, so 𝐶𝑖 is designer 𝑖’s best response. And by the same claim, 𝑝𝑖(𝐶𝑖0 ,𝑪−𝑖0 ) = 𝑝𝑖(𝑇𝑖0 ,𝑪−𝑖0 ) = 0 for 

any 𝑖 ≠ 𝑖0, so 𝑝𝑖0 (𝐶𝑖0 ,𝑪−𝑖0 ) = 𝑝𝑖0 (𝑇𝑖0 ,𝑪−𝑖0 ) = 1. As a result,

𝛽(𝐶𝑖0 , 𝑝𝑖0 (𝐶𝑖0 ,𝑪−𝑖0 )) = 𝛾𝐶𝑖0
(𝑛) = 𝛾𝑇𝑖0

(𝑛) = 𝛽(𝑇𝑖0 , 𝑝𝑖0 (𝑇𝑖0 ,𝑪−𝑖0 )),

and

𝑢𝑖0 (𝐶𝑖0 ,𝑪−𝑖0 ) =𝑅𝑖0
− 𝑛𝛽(𝐶𝑖0 , 𝑝𝑖0 (𝐶𝑖0 ,𝑪−𝑖0 )) =𝑅𝑖0

− 𝑛𝛽(𝑇𝑖0 , 𝑝𝑖0 (𝑇𝑖0 ,𝑪−𝑖0 )) = 𝑢𝑖0 (𝑇𝑖0 ,𝑪−𝑖0 ).

In other words, 𝐶𝑖0 has equal utility for designer 𝑖0 as her best response 𝑇𝑖0 , which implies that 𝐶𝑖0 is also designer 𝑖0 ’s best response. 
To conclude, 𝐶𝑖 is designer 𝑖’s best response for any 𝑖, so (𝐶1,… ,𝐶𝑚) is a contestant-symmetric subgame-perfect equilibrium. This 
completes the proof.

Proof of item 1 of Theorem 3.3. For any contestant-symmetric subgame-perfect equilibrium (𝐶1,… ,𝐶𝑚), we claim that (�̃�1,… , �̃�𝑚) is 
a symmetric equilibrium for the contestants under (𝐶1,… ,𝐶𝑚); then, since the contestants’ symmetric equilibrium is unique according 
to Lemma 2.8, we must have 𝑝𝑖(𝐶1,… ,𝐶𝑚) = �̃�𝑖, which completes the proof. Consider 𝛽(𝐶𝑖, �̃�𝑖) for all 𝑖 ∈ {1,… ,𝑚}. If 𝑖 ∉ 𝑃 , then 
�̃�𝑖 = 0 and 𝛽(𝐶𝑖, �̃�𝑖) = 𝑅𝑖 = 𝛽(𝑇𝑖, �̃�𝑖). If 𝑖 ∈ 𝑃 , then by item 2 and 3, either 𝐶𝑖 ∈MRD(𝑖) or �̃�𝑖 = 1 and 𝛾𝐶𝑖 (𝑛) = 𝛾𝑇𝑖 (𝑛), and we have 
𝛽(𝐶𝑖, �̃�𝑖) = 𝛽(𝑇𝑖, �̃�𝑖) in either case. So 𝛽(𝐶𝑖, �̃�𝑖) = 𝛽(𝑇𝑖, �̃�𝑖) for all 𝑖 ∈ {1,… ,𝑚}. Then applying equilibrium condition (Claim 2.1) for 
the case where designers choose (𝑇1,… , 𝑇𝑚), we get 𝛽(𝐶𝑖, �̃�𝑖) = 𝛽(𝑇𝑖, �̃�𝑖) = 𝛽(𝑇𝑗 , �̃�𝑗 ) = 𝛽(𝐶𝑗, �̃�𝑗 ) ≥ 𝛽(𝑇𝓁 , �̃�𝓁) = 𝛽(𝐶𝓁 , �̃�𝓁) for any 𝑖, 𝑗 ∈ 𝑃

and 𝓁 ∉ 𝑃 . We therefore know that when designers choose (𝐶1,… ,𝐶𝑚), (�̃�1,… , 𝑝𝑚) is still a best response for any contestant when 
all the other contestants use (�̃�1,… , �̃�𝑚), which means that (�̃�1,… , 𝑝𝑚) is a contestants’ symmetric equilibrium.
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B.3. Pareto efficiency of the equilibria: proof of Theorem 3.7

Assume 𝑻 = (𝑇1,… , 𝑇𝑚) is the contestant-symmetric subgame-perfect equilibrium in Theorem 3.1 for 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑛𝑖=1, (𝑖)
𝑛
𝑖=1), 

and 𝑪 = (𝐶1,… ,𝐶𝑚) ∈ 1 ×⋯×𝑚 is any other strategy profile of the designers. We will show that 𝑪 is not a Pareto improvement of 
𝑻 which proves the theorem. Denote by (�̃�1,… , �̃�𝑚) = 𝒑(𝑻 ) and (𝑝1,… , 𝑝𝑚) = 𝒑(𝑪) the symmetric equilibria contestants play under 
𝑻 and 𝑪 , respectively. If 𝑝𝑖 = �̃�𝑖 for any 𝑖, then as 𝑇𝑖 is the maximal rent dissipation contest of 𝑖, by Claim 2.4 we have

𝛽(𝑇𝑖, 𝑝𝑖) ≤ 𝛽(𝐶𝑖, 𝑝𝑖)

As a result, for any designer 𝑖,

𝑢𝑖(𝑻 ) =𝑅𝑖[1 − (1 − 𝛼𝑖)(1 − �̃�𝑖)𝑛] − 𝑛�̃�𝑖𝛽(𝑇𝑖, �̃�𝑖)

=𝑅𝑖[1 − (1 − 𝛼𝑖)(1 − 𝑝𝑖)𝑛] − 𝑛𝑝𝑖𝛽(𝑇𝑖, 𝑝𝑖)

≥𝑅𝑖[1 − (1 − 𝛼𝑖)(1 − 𝑝𝑖)𝑛] − 𝑛𝑝𝑖𝛽(𝐶𝑖, 𝑝𝑖) = 𝑢𝑖(𝑪),

showing that 𝑪 is not a Pareto improvement of 𝑻 .

Otherwise, there exist 𝑖, 𝑗 such that 𝑝𝑖 > �̃�𝑖 and 𝑝𝑗 < �̃�𝑗 . Note that this implies 𝑝𝑖, �̃�𝑗 > 0, so by equilibrium condition (Claim 2.1), 
we get

𝛽(𝐶𝑖, 𝑝𝑖) ≥ 𝛽(𝐶𝑗, 𝑝𝑗 ), (22)

and

𝛽(𝑇𝑗 , �̃�𝑗 ) ≥ 𝛽(𝑇𝑖, �̃�𝑖). (23)

Since 𝑝𝑗 < �̃�𝑗 and 𝑇𝑗 is a monotonically decreasing utility contest, by Claim 2.3 we have

𝛽(𝑇𝑗 , �̃�𝑗 ) < 𝛽(𝑇𝑗 , 𝑝𝑗 ). (24)

Moreover, as 𝑇𝑗 is a maximal rent dissipation contest in 𝑗 , we have

𝛽(𝑇𝑗 , 𝑝𝑗 ) ≤ 𝛽(𝐶𝑗, 𝑝𝑗 ) (25)

by Claim 2.4. Combining these inequalities together, we get

𝛽(𝑇𝑖, �̃�𝑖)
(23)

≤ 𝛽(𝑇𝑗 , �̃�𝑗 )
(24)
< 𝛽(𝑇𝑗 , 𝑝𝑗 )

(25)

≤ 𝛽(𝐶𝑗, 𝑝𝑗 )
(22)

≤ 𝛽(𝐶𝑖, 𝑝𝑖).

Now we consider the utilities of designer 𝑖 in 𝑻 and 𝑪 . We have

𝑢𝑖(𝑻 ) =𝑅𝑖[1 − (1 − 𝛼𝑖)(1 − �̃�𝑖)𝑛] − 𝑛�̃�𝑖𝛽(𝑇𝑖, �̃�𝑖),

𝑢𝑖(𝑪) =𝑅𝑖[1 − (1 − 𝛼𝑖)(1 − 𝑝𝑖)𝑛] − 𝑛𝑝𝑖𝛽(𝐶𝑖, 𝑝𝑖).

Similarly to (18), we define 𝑓 (𝑝) =𝑅𝑖[1 − (1 − 𝛼𝑖)(1 − 𝑝)𝑛] − 𝑛𝑝𝛽(𝑇𝑖, �̃�𝑖) and have

𝑓 ′(𝑝) ≤ (1 − 𝛼𝑖)𝑛𝑅𝑖(1 − 𝑝)𝑛−1 − 𝑛𝑅𝑖(1 − �̃�𝑖)𝑛−1 < 0

for 𝑝 > �̃�𝑖, which implies that 𝑓 (𝑝) is a strictly decreasing function of 𝑝 when 𝑝 ≥ �̃�𝑖. Therefore, as 𝑝𝑖 > �̃�𝑖, we have 𝑓 (𝑝𝑖) < 𝑓 (�̃�𝑖). As 
a result,

𝑢𝑖(𝑻 ) = 𝑓 (�̃�𝑖) > 𝑓 (𝑝𝑖) =𝑅𝑖[1 − (1 − 𝛼𝑖)(1 − 𝑝𝑖)𝑛] − 𝑛𝑝𝑖𝛽(𝑇𝑖, �̃�𝑖)

≥𝑅𝑖[1 − (1 − 𝛼𝑖)(1 − 𝑝𝑖)𝑛] − 𝑛𝑝𝑖𝛽(𝐶𝑖, 𝑝𝑖) = 𝑢𝑖(𝑪),

which indicates that 𝑪 cannot be a Pareto improvement of 𝑻 , concluding the proof.

B.4. Proof of Example 3.5

Example 3.5. Consider 𝑛 contestants and 𝑚 ≥ 3 contest designers with 0 ≤ 𝛼𝑖 < 1. Contest 1 has reward 𝑅1 = 1, and each other 

contest has reward 𝑅𝑗 =
(
𝑚−1
𝑚−2

)𝑛−1
+ 1. Each set 𝑖 contains all MDU contests (hence contains APA). Then for any contest 𝐶1 ∈ 1, 

(𝐶1, 𝑇2,… , 𝑇𝑚) where 𝑇𝑗 =APA ∈MRD(𝑗 ) for 𝑗 = 2,… ,𝑚 is a contestant-symmetric SPE. In this equilibrium, 𝑝1(𝐶1, 𝑇2,… , 𝑇𝑚) = 0, 
and 𝑝𝑗 (𝐶1, 𝑇2,… , 𝑇𝑚) =

1 
𝑚−1 > 0 for any 𝑗 = 2,… ,𝑚.

Proof. When for all 𝑖 = 1,… ,𝑚, contest designer 𝑖 chooses 𝑇𝑖 = APA, we have that for any 𝑗 = 2,… ,𝑚, the contestant’s utility 
satisfies
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𝛽
(
𝑇𝑗 ,

1 
𝑚− 1

)
=𝑅𝑗

(
1 − 1 

𝑚− 1

)𝑛−1
=
[(

𝑚− 1
𝑚− 2

)𝑛−1
+ 1

](
𝑚− 2
𝑚− 1

)𝑛−1
> 1 =𝑅1 = 𝛽(𝑇1,0),

which implies that 
(
0, 1 

𝑚−1 ,… ,
1 

𝑚−1

)
is a symmetric equilibrium for contestants in (𝑇1,… , 𝑇𝑚), i.e. 𝑝𝑖(𝑇1,… , 𝑇𝑚) =

{
1 

𝑚−1 , 𝑖 = 2,… ,𝑚

0, 𝑖 = 1
. 

Then the claim that any (𝐶1, 𝑇2,… , 𝑇𝑚), with 𝑇𝑗 =APA for 𝑗 = 2,… ,𝑚 and 𝐶1 be an arbitrary contest in 1, is a contestant-symmetric 

subgame-perfect equilibrium with 𝑝𝑖(𝐶1, 𝑇2,… , 𝑇𝑚) = 𝑝𝑖(𝑇1,… , 𝑇𝑚) =

{
1 

𝑚−1 , 𝑖 = 2,… ,𝑚

0, 𝑖 = 1
follows from Theorem 3.3. □

Appendix C. Missing proofs from Section 4

C.1. Proof of Lemma 4.1

Lemma 4.1 (Corollary of Baye et al. (1996); Schweinzer and Segev (2012); Ewerhart (2017)). A contestant’s utility in a Tullock contest 
𝐶𝜏 with parameter 𝜏 ∈ [0,+∞], reward 𝑅, and 𝑘 total contestants equals

𝛾𝐶𝜏 (𝑘) =
⎧⎪⎨⎪⎩
𝑅 if 𝑘 = 1,
𝑅( 1 

𝑘
− 𝑘−1

𝑘2
𝜏) if 𝑘 

𝑘−1 ≥ 𝜏,

0 if 𝑘 
𝑘−1 < 𝜏 ≤ +∞.

(12)

As corollaries,

• Every Tullock contest satisfies MDU.

• Any Tullock contest with 𝜏 ≥ 2 has full rent dissipation.

• If  is the set of all Tullock contests with parameter 𝜏 in some range whose maximum 𝜏max is well defined and at most 2, then the Tullock 
contest with 𝜏max is the only contest in MRD().

Proof. The expression for 𝛾𝐶𝜏 (𝑘) follows from previous works. Specifically, when 𝑘 = 1 the single contestant exerts no effort and 
obtains utility 𝛾𝐶𝜏 (1) =𝑅. For 𝑘 ≥ 2, Proposition 2 of Schweinzer and Segev (2012) shows that if 𝑘 

𝑘−1 ≥ 𝜏 then 𝛾𝐶𝜏 (𝑘) =𝑅( 1 
𝑘
− 𝑘−1

𝑘2
𝜏). 

Corollary 5 of Ewerhart (2017) shows that if 𝑘 
𝑘−1 < 𝜏 < +∞ then 𝛾𝐶𝜏 (𝑘) = 0. Baye et al. (1996) show that for 𝜏 = +∞, 𝛾𝐶𝜏 (𝑘) = 0 for 

𝑘 ≥ 2.

Now, we prove the first corollary that every Tullock contest satisfies MDU. To prove this, we only need to verify that the term 
𝛾𝐶𝜏 (𝑘) = 𝑅( 1 

𝑘
− 𝑘−1

𝑘2
𝜏) is monotonically decreasing in 𝑘 (when 2 ≤ 𝑘 

𝑘−1 < 𝜏). Consider the function 𝑓 (𝑥) = 1 
𝑥
− 𝑥−1

𝑥2
𝜏 for 𝑥 satisfying 

2 ≤ 𝑥 
𝑥−1 < 𝜏 . We take its derivative:

𝑓 ′(𝑥) = − 1 
𝑥2

− 𝑥2 − 2(𝑥− 1)𝑥
𝑥4

𝜏 = − 1 
𝑥2

+ 𝑥− 2
𝑥3

𝜏.

Given 𝑥 
𝑥−1 < 𝜏 , we have

𝑓 ′(𝑥) ≤ − 1 
𝑥2

+ 𝑥− 2
𝑥3

𝑥 
𝑥− 1

= 1 
𝑥2

(
−1 + 𝑥− 2

𝑥− 1

)
= − 1 

𝑥2
⋅

1 
𝑥− 1

≤ 0.

Thus, 𝑓 (𝑥) is monotonically decreasing, and so is 𝛾𝐶𝜏 (𝑘).
Then, we prove the second corollary. With 𝜏 > 2, we have 𝑘 

𝑘−1 < 𝜏 for any 𝑘 ≥ 2, so 𝛾𝐶𝜏 (𝑘) = 0, meaning that 𝐶𝜏 has full rent 
dissipation. With 𝜏 = 2, we have 𝛾𝐶𝜏 (𝑘 = 2) = 𝑅( 1 

𝑘
− 𝑘−1

𝑘2
𝜏) = 0 and 𝛾𝐶𝜏 (𝑘) = 0 for any 𝑘 ≥ 3 since 𝑘 

𝑘−1 < 𝜏 , so 𝐶𝜏 has full rent 
dissipation.

Finally, we prove the third corollary. We note that, for any fixed 𝑘 ≥ 2, the contestant’s utility 𝛾𝐶𝜏 (𝑘) =𝑅( 1 
𝑘
− 𝑘−1

𝑘2
𝜏) is a strictly 

decreasing non-negative function of 𝜏 when 0 ≤ 𝜏 ≤
𝑘 
𝑘−1 ≤ 2 and 𝛾𝐶𝜏 (𝑘) = 0 when 𝜏 > 𝑘 

𝑘−1 . This means that the contest with the largest 
parameter 𝜏max ≤ 2 is the only MRD contest among Tullock contests with parameters ≤ 2. □

Appendix D. Missing parts from Section 5

D.1. Proof of Theorem 5.1

For any 𝑪 = (𝐶1,… ,𝐶𝑚), let 𝒑(𝑪) = (𝑝1,… , 𝑝𝑚). By Eq. (13) and the assumption that 𝛼𝑖 = 𝛼,

𝑊𝑆 (𝐶1,… ,𝐶𝑚) =
𝑚 ∑
𝑖=1 

𝑅𝑖 − (1 − 𝛼)
𝑚 ∑
𝑖=1 

𝑅𝑖(1 − 𝑝𝑖)𝑛.
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Then by Hölder’s inequality,

(
𝑚 ∑
𝑖=1 

𝑅𝑖(1 − 𝑝𝑖)𝑛
) 1

𝑛 ( 𝑚 ∑
𝑖=1 

𝑅
− 1 
𝑛−1

𝑖

) 𝑛−1
𝑛 

=

(
𝑚 ∑
𝑖=1 

(
𝑅

1
𝑛 
𝑖
(1 − 𝑝𝑖)

)𝑛
) 1

𝑛 ( 𝑚 ∑
𝑖=1 

(
𝑅
− 1
𝑛 

𝑖

) 𝑛 
𝑛−1

) 𝑛−1
𝑛 

≥

𝑚 ∑
𝑖=1 

(
𝑅

1
𝑛 
𝑖
(1 − 𝑝𝑖)

)(
𝑅
− 1
𝑛 

𝑖

)
=

𝑚 ∑
𝑖=1 

(1 − 𝑝𝑖) =𝑚− 1.

So

𝑚 ∑
𝑖=1 

𝑅𝑖(1 − 𝑝𝑖)𝑛 ≥

⎛⎜⎜⎜⎜⎜⎝
𝑚− 1 (∑𝑚

𝑖=1𝑅
− 1 
𝑛−1

𝑖

) 𝑛−1
𝑛 

⎞⎟⎟⎟⎟⎟⎠

𝑛

= (𝑚− 1)𝑛(∑𝑚
𝑖=1𝑅

− 1 
𝑛−1

𝑖

)𝑛−1 ,

and

𝑊𝑆 (𝐶1,… ,𝐶𝑚) =
𝑚 ∑
𝑖=1 

𝑅𝑖 − (1 − 𝛼)
𝑚 ∑
𝑖=1 

𝑅𝑖(1 − 𝑝𝑖)𝑛 ≤
𝑚 ∑
𝑖=1 

𝑅𝑖 −
(1 − 𝛼)(𝑚− 1)𝑛(∑𝑚

𝑖=1𝑅
− 1 
𝑛−1

𝑖

)𝑛−1 . (26)

We will show that 𝑊𝑆 (𝑇1,… , 𝑇𝑚) is equal to the right-hand side in the following cases.

The case when 𝒊 contains a full rent dissipation contest for every 𝒊. In this case, since 𝑇𝑖 ∈MRD(𝑖), we have that 𝑇𝑖 is also a 
full rent dissipation contest. Let �̃�𝑖 = 𝑝𝑖(𝑇1,… , 𝑇𝑚). If �̃�𝑖 = 0 for some 𝑖, then by Claim B.2, 𝑝𝑖(𝐶1,… ,𝐶𝑚) = 0. Thus 𝑊𝑆 (𝑻 ) =𝑊𝑆 (𝑻 −𝑖)
and 𝑊𝑆 (𝑪) =𝑊𝑆 (𝑪−𝑖). We can thus assume that �̃�𝑖 > 0 for every 𝑖. Then by Claim 2.1,

𝛽(𝑇1, �̃�1) = 𝛽(𝑇2, �̃�2) =⋯ = 𝛽(𝑇𝑚, �̃�𝑚). (27)

As 𝑇𝑖 has full rent dissipation, we have 𝛽(𝑇𝑖, �̃�𝑖) =𝑅𝑖(1 − �̃�𝑖)𝑛−1. Substitute this into (27), we get

𝑅
1 
𝑛−1
1 (1 − �̃�1) =𝑅

1 
𝑛−1
2 (1 − �̃�2) =⋯ =𝑅

1 
𝑛−1
𝑚 (1 − �̃�𝑚).

So ∀𝑖= 1,… ,𝑚,

1 − �̃�𝑗

1 − �̃�𝑖
=
𝑅
− 1 
𝑛−1

𝑗

𝑅
− 1 
𝑛−1

𝑖

, ∀𝑗 = 1,… ,𝑚. (28)

Note that 
∑𝑚

𝑗=1(1 − �̃�𝑗 ) =𝑚− 1. Fixing any 𝑖 and summing (28) for 𝑗 = 1 to 𝑚, we obtain

𝑚− 1 
1 − �̃�𝑖

=
𝑚 ∑
𝑗=1 

1 − �̃�𝑗

1 − �̃�𝑖
=

∑𝑚
𝑗=1𝑅

− 1 
𝑛−1

𝑗

𝑅
− 1 
𝑛−1

𝑖

.

So

1 − �̃�𝑖 =
𝑚− 1 ∑𝑚
𝑗=1𝑅

− 1 
𝑛−1

𝑗

⋅𝑅
− 1 
𝑛−1

𝑖
,

and therefore,

𝑊𝑆 (𝑇1,… , 𝑇𝑚) =
𝑚 ∑
𝑖=1 

𝑅𝑖 − (1 − 𝛼)
𝑚 ∑
𝑖=1 

𝑅𝑖(1 − �̃�𝑖)𝑛 =
𝑚 ∑
𝑖=1 

𝑅𝑖 −
(1 − 𝛼)(𝑚− 1)𝑛(∑𝑚
𝑗=1𝑅

− 1 
𝑛−1

𝑗

)𝑛−1 , (29)

which meets the bound given by (26). This completes the proof for this case.

The case of MRD-symmetric strategy space. Note that by definition any two contests 𝑇 ,𝑇 ′ ∈ MRD(𝑖) must have the same 𝜸
vector (i.e., for any 𝑘 = 1,… , 𝑛, 𝛾𝑇 (𝑘) = 𝛾𝑇 ′ (𝑘)). The following lemma therefore proves this case:
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Lemma D.1. In a 𝐶𝐶𝐺(𝑚,𝑛, (𝑅𝑖)𝑚𝑖=1, (𝑖)
𝑚
𝑖=1) with 𝑅1 =⋯ =𝑅𝑚 =𝑅 (and 𝑖’s can be different), for any strategy profile 𝑪 ′ = (𝐶 ′

1,… ,𝐶 ′
𝑚)

where for every 𝑖, 𝐶 ′
𝑖
∈ 𝑖 is a MDU contest, and has the same 𝜸 vector (i.e., for any 𝑘 = 1,… , 𝑛, and any 𝑖, 𝑗 ∈ {1,… ,𝑚}, 𝛾𝐶′

𝑖
(𝑘) = 𝛾𝐶′

𝑗
(𝑘)), 

𝑪 ′ maximizes 𝑊𝑆 .

Proof. When the rewards are the same, (26) becomes

𝑊𝑆 (𝐶1,… ,𝐶𝑚) =𝑚𝑅− (1 − 𝛼)𝑅
𝑚 ∑
𝑖=1 

(1 − 𝑝𝑖)𝑛 ≤𝑚𝑅− (1 − 𝛼)𝑅 (𝑚− 1)𝑛

𝑚𝑛−1

for any (𝐶1,… ,𝐶𝑚) ∈ 1 ×⋯ × 𝑚. On the other hand, since any two 𝐶 ′
𝑖

and 𝐶 ′
𝑗

have the same 𝜸 vector it follows that

𝛽
(
𝐶 ′
1,

1 
𝑚

)
=⋯ = 𝛽

(
𝐶 ′
𝑚
,
1 
𝑚

)
.

So (𝑝1,… , 𝑝𝑚) =
(

1 
𝑚
,… ,

1 
𝑚

)
is a symmetric equilibrium for the contestants under (𝐶 ′

1,… ,𝐶 ′
𝑚). Moreover, by Lemma 2.8, it is the 

unique symmetric equilibrium, so 𝑝𝑖(𝑪 ′) = 1 
𝑚

. Therefore

𝑊𝑆 (𝐶 ′
1,… ,𝐶 ′

𝑚) =
𝑚 ∑
𝑖=1 

𝑅𝑖 − (1 − 𝛼)
𝑚 ∑
𝑖=1 

𝑅𝑖(1 − 𝑝𝑖(𝑪 ′))𝑛

=𝑚𝑅− (1 − 𝛼)𝑅 (𝑚− 1)𝑛

𝑚𝑛−1 ≥𝑊𝑆 (𝐶1,… ,𝐶𝑚),

which completes our proof. □

D.2. Counter-examples to Theorem 5.1

Example D.2. Let 𝑚 = 2, 𝑛 = 2,𝑅1 = 𝑅2 = 1, 𝛼1 = 𝛼2 = 0. Let 𝐶,𝑇 be Tullock contests with 𝜏𝐶 = 1, 𝜏𝑇 = 1.2. It can be verified that 
𝛾𝐶 = (1, 14 ) and 𝛾𝑇 = (1, 15 ). Suppose 1 = {𝐶} and 2 = {𝐶,𝑇 }. Then MRD(1) = {𝐶} and MRD(2) = {𝑇 }. Due to symmetry, 
𝒑(𝐶,𝐶) = ( 12 ,

1
2 ), so

𝑊𝑆 (𝐶,𝐶) = 2 − 2
(
1 − 1

2

)2
= 3

2 .

We can determine 𝒑(𝐶,𝑇 ) = (�̃�1,1 − �̃�1) by solving 𝛽(𝐶, �̃�1) = 1 − �̃�1 +
1
4 �̃�1 = 𝛽(𝑇 ,1 − �̃�1) = �̃�1 +

1
5 (1 − �̃�1) hence �̃�1 =

16
31 and �̃�2 =

1 − �̃�1 =
15
31 . So

𝑊𝑆 (𝐶,𝑇 ) = 2 − (1 − �̃�1)2 − (1 − �̃�2)2 =
1441
961 <

3
2 =𝑊𝑆 (𝐶,𝐶).

Remark D.3. One can construct a similar example for every 𝑚,𝑛, and 𝑅1,… ,𝑅𝑚. Specifically, construct 𝑖 as follows: consider 
equation set

𝑅𝑖

𝑛 ∑
𝑘=1

(
𝑛− 1 
𝑘− 1

)
�̃�𝑘−1𝑖 (1 − �̃�𝑖)𝑛−𝑘𝛾𝐶𝑖 (𝑘) =𝑅, ∀𝑖 = 1,… ,𝑚.

Find a solution (𝑅,{𝛾𝐶𝑖 (𝑘)}𝑖=1,…,𝑚,𝑘=2,…,𝑛) of it, and choose a monotonically decreasing utility contest 𝑇𝑖 that has higher rent dis-

sipation than 𝐶𝑖 for every 𝑖. If 𝑇1,… , 𝑇𝑚 satisfy 𝑝𝑖(𝑇1,… , 𝑇𝑚) ≠ �̃�𝑖 for some 𝑖, then 𝑊𝑆 (𝑇1,… , 𝑇𝑚) <𝑊𝑆 (𝐶1,… ,𝐶𝑚), which means 
(𝑇1,… , 𝑇𝑚) does not maximize 𝑊𝑆 any more, and 𝑖 = {𝐶𝑖, 𝑇𝑖} is then a counterexample.

Example D.4. When contest designers value keeping the reward differently, Theorem 5.1 no longer holds. For example, consider 
𝑚 = 𝑛 = 2,𝑅1 =𝑅2 = 1, 𝛼1 = 0, 𝛼2 = 0.9. By Eq. (13), 𝑊𝑆 (𝑪) = 2− (1−𝑝1(𝑪))2 −0.1 ⋅𝑝1(𝑪)2. Consider the contests 𝐶,𝑇 defined in Ex-

ample D.2 and suppose 1 = 2 = {𝐶,𝑇 } (i.e., 1 is different than in Example D.2). Since MRD(1) =MRD(2) = {𝑇 }, Theorems 3.1

and 3.3 imply that the unique equilibrium is (𝑇 ,𝑇 ). Due to symmetry, 𝒑(𝑇 ,𝑇 ) = (0.5,0.5), so 𝑊𝑆 (𝑇 ,𝑇 ) = 2 − 0.52(1 + 0.1) = 1.725. 
However if contest designers choose (non-equilibrium) contests (𝐶,𝑇 ), contestants’ equilibrium participation probabilities as calcu-

lated in Example D.2 are �̃�1 =
16
31 and �̃�2 =

15
31 . So, 𝑊𝑆 (𝐶,𝑇 ) = 2 − (1 − �̃�1)2 − 0.1 ⋅ (�̃�1)2 > 1.739 > 𝑊𝑆 (𝑇 ,𝑇 ). Crucially, changing 

the 𝛼𝑖 ’s does not change contestants’ equilibrium choices, although it does change the social welfare. Therefore, in this example, 
equilibrium contests do not maximize the social welfare.

Appendix E. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.geb.2025.07.001. 
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