Tao Lin

Education

- Harvard University, Ph.D. in Computer Science Advisor: Yiling Chen	09/2020 – 05/2025 (expected)
Areas of Research: Machine Learning, Mechanism Design, Information Design	
- Peking University, B.S. in Computer Science and Technology, summa cum laude	09/2016 - 05/2020
Advisor: Xiaotie Deng	
Thesis: Private Information Protection Game in Auctions	

Research Interests

My research focuses on the interplay between **machine learning** and **economic incentives** in multi-agent systems. As machine learning algorithms increasingly shape real-world decision-making, the *strategic behavior* of involved agents – whether users or data providers – fundamentally impacts the algorithmic performance. My research thus investigates the theoretical foundations and practical limitations of learning in strategic, dynamic multi-agent environments, departing from the traditional machine learning paradigm that assumes exogenous, stationary data distributions. By examining the complex interplay between incentives and learning in both theoretical economic models (*mechanism design* and *information design*) and real-world systems (e.g., *ad auction platforms* and *recommender systems*), I aim to contribute to the community's common goal of building socially responsible AI systems.

Publications

- User-Creator Feature Dynamics in Recommender Systems with Dual Influence Tao Lin, Kun Jin, Andrew Estornell, Xiaoying Zhang, Yiling Chen, Yang Liu	[NeurIPS 2024]
- <u>Bias Detection Via Signaling</u> (α - β) Yiling Chen, <i>Tao Lin</i> , Ariel D. Procaccia, Aaditya Ramdas, Itai Shapira	[NeurIPS 2024]
 - <u>Multi-Sender Persuasion: A Computational Perspective</u> Safwan Hossain*, Tonghan Wang*, <i>Tao Lin*</i>, Yiling Chen, David C. Parkes, Haifeng Xu (*: equal contribution) 	[ICML 2024]
 Learning Thresholds with Latent Values and Censored Feedback Jiahao Zhang, Tao Lin, Weiqiang Zheng, Zhe Feng, Yifeng Teng, Xiaotie Deng 	[ICLR 2024]
- <u>Sample Complexity of Forecast Aggregation</u> <i>Tao Lin</i> , Yiling Chen	[NeurIPS 2023] (spotlight)
 From Monopoly to Competition: Optimal Contests Prevail (α-β) Xiaotie Deng, Yotam Gafni, Ron Lavi, <i>Tao Lin</i>, Hongyi Ling Under <i>revise-and-resubmit</i> to journal [Games and Economic Behavior] 	[AAAI 2023]
 - <u>Nash Convergence of Mean-Based Learning Algorithms in First Price Auctions</u> (α-β) Xiaotie Deng, Xinyan Hu, <i>Tao Lin</i>, Weiqiang Zheng 	[WWW 2022]
- <u>How Many Representatives Do We Need? The Optimal Size of an Epistemic Congress</u> Manon Revel, <i>Tao Lin</i> , Daniel Halpern	[AAAI 2022]
- <u>Learning Utilities and Equilibria in Non-Truthful Auctions</u> (α - β) Hu Fu, Tao Lin	[NeurIPS 2020]

- <u>A Game-Theoretic Analysis of the Empirical Revenue Maximization Algorithm with</u> Endogenous Sampling	[NeurIPS 2020]
(lpha - eta) Xiaotie Deng, Ron Lavi, <i>Tao Lin,</i> Qi Qi, Wenwei Wang, Xiang Yan	
 - Private Data Manipulation in Optimal Sponsored Search Auction (α-β) Xiaotie Deng, Tao Lin, Tao Xiao 	[WWW 2020]
Working Papers	
- <u>Generalized Principal-Agent Problem with a Learning Agent</u> Tao Lin, Yiling Chen	[2024]
- Information Design with Unknown Prior Tao Lin, Ce Li	[2024]
Notes Not Planned to Publish	
- How Does Independence Help Generalization? Sample Complexity of ERM on Product Distributions	[2022]
- On Clearing Prices in Matching Markets: A Simple Characterization without Duality	[2019]
Research Experiences Outside Harvard	
- Google , "Market Algorithms" group Student Researcher Host: Christopher Liaw	06 — 09, 2024
 ByteDance, "Responsible AI" group Research Intern Host: Yang Liu Led five people to work on a project on "polarization in recommender systems". Proposed research problem, proved theoretical results, ran initial experiments, d Paper published at [NeurIPS 2024]. 	05 – 09, 2023 rafted the paper.
 Research Assistant Advisor: Xiaotie Deng Led six people to work on a project on "incentive-compatible learning in auctions". Dispatched tasks, reviewed literature, did simulations, and proved main theorem Paper published at [NeurIPS 2020]. Advised two undergraduate students to write a paper on "no-regret learning in first- 	price auctions".
 Proposed research problems, suggested solutions, surveyed literature, revised pa Paper published at [WWW 2022] and <i>invited</i> to present at [AAMAS 2022 workshow with Strategic Agents]. 	•
 Summer research visit to University of British Columbia Host: Hu Fu Drove a project on "sample complexity of learning equilibria in non-truthful auctions formulation to completion. Paper published at [NeurIPS'20]. 	07 – 09, 2019 s" from
Teaching Experiences	

- *Teaching assistant* for **Convex Optimization and Its Applications** (Harvard University) Spring 2022

- Teaching assistant for Algorithmic Game Theory (Peking University)

Academic Services

- Organizer of Harvard	EconCS seminar	2023 – 2024
- Conference Review:	NeurIPS'24 '23, ICML'24, ICLR'25 '24, AAAI'25, AISTATS'25,	
	ACML'24, PPAI'24, STOC'24, SODA'24, ITCS'23, IJTCS'24, EC'20	
- Journal Review:	Theoretical Computer Science, SIAM Journal on Computing	

Selected Talks

 INFORMS Annual Meeting, "Innovations in Data-driven Marketplaces" session Title: <u>Bayesian Persuasion with a Learning Agent</u> 	10/2024
- ESIF Economics and AI+ML Meeting Title: Generalized Principal-Agent Problem with a Learning Agent	08/2024
- Invited talk at CCF Annual Conference on Computational Economics Title: Private Data Manipulation in Sponsored Search Auctions	08/2023
 Peking University Turing Class "CS peer talk" Title: Sample Complexity of Forecast Aggregation 	06/2023
- Harvard EconCS seminar Title: Persuading a Behavioral Agent: Approximately Best Responding and Learning	03/2023
 Invited talk at AAMAS Workshop on Learning with Strategic Agents Title: Nash Convergence of Mean-Based Learning Algorithms in First Price Auctions 	05/2022
- Institute for Theoretical Computer Science (ITCS), SUFE Title: Robustness of Empirical Revenue Maximization in Auction Learning	06/2020

Awards

- Siebel Scholarship	2024
(Annually awarded for academic excellence and demonstrated leadership to 80 top students	
from the world's leading graduate schools.)	
- Peking University Turing Class "Tu Ling Ben Jing" Prize	2019
- Peking University "Fang Zheng" Scholarship	2017
- Chinese National Olympiad in Informatics, Silver Medal	2015

References

Yiling Chen

Gordon McKay Professor of Computer Science John A. Paulson School of Engineering and Applied Sciences Harvard University <u>yiling@seas.harvard.edu</u>

Ariel D. Procaccia

Gordon McKay Professor of Computer Science John A. Paulson School of Engineering and Applied Sciences Harvard University <u>arielpro@seas.harvard.edu</u> **Ron Lavi** Associate Professor, Department of Economics University of Bath <u>arl65@bath.ac.uk</u>

Haifeng Xu Assistant Professor, Department of Computer Science and Data Science Institute University of Chicago <u>haifengxu@uchicago.edu</u>

Yang Liu Assistant Professor, Department of Computer Science and Engineering University of California, Santa Cruz yangliu@ucsc.edu

Christopher Liaw Research Scientist Google <u>cvliaw@google.com</u>